硅酸盐通报
硅痠鹽通報
규산염통보
BULLETIN OF THE CHINESE CERAMIC SOCIETY
2009年
6期
1143-1148
,共6页
张君博%肖国庆%刘兴平%范咏莲%刘斌%张正富
張君博%肖國慶%劉興平%範詠蓮%劉斌%張正富
장군박%초국경%류흥평%범영련%류빈%장정부
镁铁铝尖晶石耐火材料%弹性模量%抗热震性
鎂鐵鋁尖晶石耐火材料%彈性模量%抗熱震性
미철려첨정석내화재료%탄성모량%항열진성
magnesia-hercynite refractories%elastic modulus%thermal shock resistance
以铁铝尖晶石和镁砂为原料,采用烧结法制备了氧化镁铁铝尖晶石耐火材料.检测了各烧后试样的体积密度、显气孔率和常温耐压强度,利用应力应变法检测了烧后试样的弹性模量,利用X射线衍射(XRD)检测了烧后试样的物相组成,采用扫描电子显微镜(SEM)观察和分析了烧后试样的显微结构.研究结果表明: 1600 ℃时各试样体积密度最大,显气孔率最小,试样达到了烧结;镁砖中加入铁铝尖晶石会引起材料常温强度降低,铁铝尖晶石加入量在3%~4%为宜;铁铝尖晶石以颗粒形式加入的试样的弹性模量比以细粉形式加入的试样要大,所以铁铝尖晶石以颗粒形式加入的试样的抗热震性相对较好;热力学计算表明:当加热温度高于182 ℃时, MgO与FeAl_2O_4开始反应生成MgAl_2O_4;从显微结构照片也可以看出, MgO与FeAl_2O_4中的FeO发生互扩散,FeO扩散进镁砂颗粒中,MgO扩散进铁铝尖晶石内部,与Al_2O_3反应生成MgAl_2O_4,在镁砂颗粒周围形成MgAl_2O_4环,并伴有微裂纹产生.
以鐵鋁尖晶石和鎂砂為原料,採用燒結法製備瞭氧化鎂鐵鋁尖晶石耐火材料.檢測瞭各燒後試樣的體積密度、顯氣孔率和常溫耐壓彊度,利用應力應變法檢測瞭燒後試樣的彈性模量,利用X射線衍射(XRD)檢測瞭燒後試樣的物相組成,採用掃描電子顯微鏡(SEM)觀察和分析瞭燒後試樣的顯微結構.研究結果錶明: 1600 ℃時各試樣體積密度最大,顯氣孔率最小,試樣達到瞭燒結;鎂磚中加入鐵鋁尖晶石會引起材料常溫彊度降低,鐵鋁尖晶石加入量在3%~4%為宜;鐵鋁尖晶石以顆粒形式加入的試樣的彈性模量比以細粉形式加入的試樣要大,所以鐵鋁尖晶石以顆粒形式加入的試樣的抗熱震性相對較好;熱力學計算錶明:噹加熱溫度高于182 ℃時, MgO與FeAl_2O_4開始反應生成MgAl_2O_4;從顯微結構照片也可以看齣, MgO與FeAl_2O_4中的FeO髮生互擴散,FeO擴散進鎂砂顆粒中,MgO擴散進鐵鋁尖晶石內部,與Al_2O_3反應生成MgAl_2O_4,在鎂砂顆粒週圍形成MgAl_2O_4環,併伴有微裂紋產生.
이철려첨정석화미사위원료,채용소결법제비료양화미철려첨정석내화재료.검측료각소후시양적체적밀도、현기공솔화상온내압강도,이용응력응변법검측료소후시양적탄성모량,이용X사선연사(XRD)검측료소후시양적물상조성,채용소묘전자현미경(SEM)관찰화분석료소후시양적현미결구.연구결과표명: 1600 ℃시각시양체적밀도최대,현기공솔최소,시양체도료소결;미전중가입철려첨정석회인기재료상온강도강저,철려첨정석가입량재3%~4%위의;철려첨정석이과립형식가입적시양적탄성모량비이세분형식가입적시양요대,소이철려첨정석이과립형식가입적시양적항열진성상대교호;열역학계산표명:당가열온도고우182 ℃시, MgO여FeAl_2O_4개시반응생성MgAl_2O_4;종현미결구조편야가이간출, MgO여FeAl_2O_4중적FeO발생호확산,FeO확산진미사과립중,MgO확산진철려첨정석내부,여Al_2O_3반응생성MgAl_2O_4,재미사과립주위형성MgAl_2O_4배,병반유미렬문산생.
The magnesia-hercynite refractories were prepared with magnesia and hercynite by sintering process. The bulk density, apparent porosity and cold crushing strength were measured. The elastic modulus of samples was measured by the method of stress and strain. The phase constituents of specimens was analyzed by X-ray diffraction (XRD), and the microstructure was observed with scanning electron microscopy (SEM).The experimental results show that the appropriate sintering temperature for samples is 1600 ℃ with the highest bulk density and the lowest apparent porosity . The cold crushing strength of samples decreases with the adding of the content of hercynite. The optimum content of hercynite is 3%-4%. The specimens with addition of hercynite particles have higher elastic modulus, so the specimens with addition of hercynite particles have better thermal shock resistance than the specimens with hercynite powder. Thermodynamic calculation show that: the magnesia reacts with hercynite resulting in magnesia-alumina spinel at temperature higher than 182 ℃. The microstructure photos also show that iron protoxide in hercynite can diffuse into magnesia particle and reacts with magnesium oxide, and forms magnesia-alumina spinel ring around magnesia when magnesia-hercynite refractories are sintered at high temperature. The reaction leads to produce microcrack between hercynite and magnesia particle.