软件学报
軟件學報
연건학보
JOURNAL OF SOFTWARE
2004年
2期
200-206
,共7页
全勇%杨杰%姚莉秀%叶晨洲
全勇%楊傑%姚莉秀%葉晨洲
전용%양걸%요리수%협신주
支持向量回归%支持向量机%SOR算法%凸二次规划%chunking算法
支持嚮量迴歸%支持嚮量機%SOR算法%凸二次規劃%chunking算法
지지향량회귀%지지향량궤%SOR산법%철이차규화%chunking산법
support vector regression%support vector machine%successive overrelaxation%quadratic programming%chunking algorithm
支持向量回归(support vector regression,简称SVR)训练算法需要解决在大规模样本条件下的凸二次规划(quadratic programming,简称QP)问题.尽管此种优化算法的机理已经有了较为明确的认识,但已有的支持向量回归训练算法仍较为复杂且收敛速度较慢.为解决这些问题.首先采用扩展方法使SVR与支撑向量机分类(SVC)具有相似的数学形式,并在此基础上针对大规模样本回归问题提出一种用于SVR的简化SOR(successive overrelaxation)算法.实验表明,这种新的回归训练方法在数据量较大时,相对其他训练方法有较快的收敛速度,特别适于在大规模样本条件下的回归训练算法设计.
支持嚮量迴歸(support vector regression,簡稱SVR)訓練算法需要解決在大規模樣本條件下的凸二次規劃(quadratic programming,簡稱QP)問題.儘管此種優化算法的機理已經有瞭較為明確的認識,但已有的支持嚮量迴歸訓練算法仍較為複雜且收斂速度較慢.為解決這些問題.首先採用擴展方法使SVR與支撐嚮量機分類(SVC)具有相似的數學形式,併在此基礎上針對大規模樣本迴歸問題提齣一種用于SVR的簡化SOR(successive overrelaxation)算法.實驗錶明,這種新的迴歸訓練方法在數據量較大時,相對其他訓練方法有較快的收斂速度,特彆適于在大規模樣本條件下的迴歸訓練算法設計.
지지향량회귀(support vector regression,간칭SVR)훈련산법수요해결재대규모양본조건하적철이차규화(quadratic programming,간칭QP)문제.진관차충우화산법적궤리이경유료교위명학적인식,단이유적지지향량회귀훈련산법잉교위복잡차수렴속도교만.위해결저사문제.수선채용확전방법사SVR여지탱향량궤분류(SVC)구유상사적수학형식,병재차기출상침대대규모양본회귀문제제출일충용우SVR적간화SOR(successive overrelaxation)산법.실험표명,저충신적회귀훈련방법재수거량교대시,상대기타훈련방법유교쾌적수렴속도,특별괄우재대규모양본조건하적회귀훈련산법설계.
Training a SVR(support vector regression)requires the solution of a very large QP(quadratic programming)optimization problem.Despite the fact that this type of problem is well understood,the existing training algorithms are very complex and slow.In order to solve these problems,this paper firstly introduces a new way to make SVR have the similar mathematic form as that of a support vector machine.Then a versatile iterative method,successive overrelaxation,is proposed.Experimental results show that this new method converges considerably faster than other methods that require the presence of a substantial amount of data in memory.The results give guidelines for the application of this method to large domains.