控制工程
控製工程
공제공정
CONTROL ENGINEERING OF CHINA
2009年
4期
475-477,506
,共4页
周长%张杰%吕文祥%刘先广%黄德先
週長%張傑%呂文祥%劉先廣%黃德先
주장%장걸%려문상%류선엄%황덕선
原油蒸馏%软测量%Bootstrap%多神经网络
原油蒸餾%軟測量%Bootstrap%多神經網絡
원유증류%연측량%Bootstrap%다신경망락
crude oil distillation%soft-sensor%Bootstrap%multiple neural network
针对原油蒸馏过程常规软测量模型难以适应原油进料性质变化的问题,提出Bootstrap多神经网络的非线性软测量处理策略.通过Bootstrap算法复制出训练集样本空间上的多个样本子空间,训练出多神经网络模型,避免了单个神经网络易于陷入局部最优及过度训练的弱点,具有较高的准确率和泛化能力.本处理策略用于建立常压塔一线干点的软测量模型,仿真结果表明模型预测准确率和鲁棒性较好,对原油性质变化具有较好的适应性.该方法将会改进实际蒸馏过程在进料性质变化情况下的产品质量指标的软测量精度.
針對原油蒸餾過程常規軟測量模型難以適應原油進料性質變化的問題,提齣Bootstrap多神經網絡的非線性軟測量處理策略.通過Bootstrap算法複製齣訓練集樣本空間上的多箇樣本子空間,訓練齣多神經網絡模型,避免瞭單箇神經網絡易于陷入跼部最優及過度訓練的弱點,具有較高的準確率和汎化能力.本處理策略用于建立常壓塔一線榦點的軟測量模型,倣真結果錶明模型預測準確率和魯棒性較好,對原油性質變化具有較好的適應性.該方法將會改進實際蒸餾過程在進料性質變化情況下的產品質量指標的軟測量精度.
침대원유증류과정상규연측량모형난이괄응원유진료성질변화적문제,제출Bootstrap다신경망락적비선성연측량처리책략.통과Bootstrap산법복제출훈련집양본공간상적다개양본자공간,훈련출다신경망락모형,피면료단개신경망락역우함입국부최우급과도훈련적약점,구유교고적준학솔화범화능력.본처리책략용우건립상압탑일선간점적연측량모형,방진결과표명모형예측준학솔화로봉성교호,대원유성질변화구유교호적괄응성.해방법장회개진실제증류과정재진료성질변화정황하적산품질량지표적연측량정도.
A nonlinear soft-sensing strategy with bootstrap aggregated neural network is proposed to solve the poor adaptability of conventional soft-sensor methods when feedstock varies in crude oil distillation.A bootstrap aggregated neural network shows better accuracy and generalization capability than a single neural network which can be trapped in a local minimum or over-fitted the training data.The proposed strategy is used for developing a soft-sensor for the end point of kerosene product of a simulated atmospheric tower.The simulation results show that the bootstrap aggregated neural network soft-sensor possesses high predictive accuracy and robustness and the proposed soft-sensor gives good performance even under severe feedstock variations.It is helpful to improve the soft-sensor precision of product quality index when feedstock varies in crude oil distillation.