南京理工大学学报(自然科学版)
南京理工大學學報(自然科學版)
남경리공대학학보(자연과학판)
JOURNAL OF NANJING UNIVERSITY OF SCIENCE AND TECHNOLOGY
2009年
6期
790-795
,共6页
空气动力学%弹丸%阻力系数%雷达数据处理%射表%弹道
空氣動力學%彈汍%阻力繫數%雷達數據處理%射錶%彈道
공기동역학%탄환%조력계수%뢰체수거처리%사표%탄도
aerodynamics%projectiles%drag coefficient%radar data processing%firing table%trajectory
针对高原射表编制问题,提出了随马赫数与海拔高度变化的弹丸阻力系数二元函数表达式和利用雷达测速曲线中提取阻力系数二元函数的方法.该方法以非均匀B样条函数作为拟合函数,使阻力系数的变化规律更接近真实情况.详细推导了提取二元阻力系数的具体算法,并提供了计算机程序框图.将对雷达实测数据进行处理得到的阻力系数用于弹道解算,与高原试验结果比较,在20°和50°射角下,传统方法与试验射程相差-1.30%和-2.28%,新方法相差-0.21%和-0.26%.按照新方法解算弹道,精度明显提高,该方法是实际可行的.
針對高原射錶編製問題,提齣瞭隨馬赫數與海拔高度變化的彈汍阻力繫數二元函數錶達式和利用雷達測速麯線中提取阻力繫數二元函數的方法.該方法以非均勻B樣條函數作為擬閤函數,使阻力繫數的變化規律更接近真實情況.詳細推導瞭提取二元阻力繫數的具體算法,併提供瞭計算機程序框圖.將對雷達實測數據進行處理得到的阻力繫數用于彈道解算,與高原試驗結果比較,在20°和50°射角下,傳統方法與試驗射程相差-1.30%和-2.28%,新方法相差-0.21%和-0.26%.按照新方法解算彈道,精度明顯提高,該方法是實際可行的.
침대고원사표편제문제,제출료수마혁수여해발고도변화적탄환조력계수이원함수표체식화이용뢰체측속곡선중제취조력계수이원함수적방법.해방법이비균균B양조함수작위의합함수,사조력계수적변화규률경접근진실정황.상세추도료제취이원조력계수적구체산법,병제공료계산궤정서광도.장대뢰체실측수거진행처리득도적조력계수용우탄도해산,여고원시험결과비교,재20°화50°사각하,전통방법여시험사정상차-1.30%화-2.28%,신방법상차-0.21%화-0.26%.안조신방법해산탄도,정도명현제고,해방법시실제가행적.
Aiming at the problem of the plateau firing table compilation, the expression of two-variable function of projectile drag coefficient varying with the mach number and altitude above sea level is presented in this paper. The method for the extraction of the two-variable function of projectile drag coefficient from radar data is also presented. The fitting function is the non-uniform B-spline, and the variety of projectile drag coefficient can be made closer to the actual situation. The computational technique for extraction of the two-variable function of projectile drag coefficient is derived and the computer program diagram is shown in the text. The projectile drag coefficient obtained by processing the radar measured data is used in a trajectory solver. The plateau firing result shows that under the firing angle of 20°and 50°, the differences of the calculation ranges of the traditional method and the experiment range are -1.30% and -2.28%, and those of the proposed method and the experiment range are -0.21% and -0.26%. By using the proposed method, the computational precision of trajectory of projectiles is improved. The illustration shows this method is feasible in practice.