计算机科学
計算機科學
계산궤과학
COMPUTER SCIENCE
2010年
4期
274-277
,共4页
小波域降噪%图像增强%比例萎缩%高斯分布%最大后验概率%峰值信噪比
小波域降譟%圖像增彊%比例萎縮%高斯分佈%最大後驗概率%峰值信譟比
소파역강조%도상증강%비례위축%고사분포%최대후험개솔%봉치신조비
Denoising in wavelet domain%Image's enhancement%Proportional shrinkage%Gaussian distribution%Maximum a posteriori%Peak signal noise ratio
针对小波域比例萎缩降噪方法在去除噪声的同时也弱化了图像细节和边缘的缺陷,提出了具有增强效果的基于最大后验概率准则的小波域自适应降噪算法,并将之应用于红外图像降噪中.该算法在假定图像系数和噪声系数先验为高斯分布的基础上,利用最大后验概率准则计算小波系数的萎缩因子,然后在考虑尺度因素和方向能量因素的基础上对萎缩因子进行修正并将之应用于小波系数萎缩过程中,最后通过逆变换得到降噪和增强的图像.试验结果表明,在损失较小峰值信噪比值的情况下,提出的方法在增强图像细节和边缘、加大图像对比度等方面要优于直接比例萎缩,能够获得较好的视觉效果.给出的小波系数增强思想可以应用于基于其它降噪准则的比例萎缩算法中.
針對小波域比例萎縮降譟方法在去除譟聲的同時也弱化瞭圖像細節和邊緣的缺陷,提齣瞭具有增彊效果的基于最大後驗概率準則的小波域自適應降譟算法,併將之應用于紅外圖像降譟中.該算法在假定圖像繫數和譟聲繫數先驗為高斯分佈的基礎上,利用最大後驗概率準則計算小波繫數的萎縮因子,然後在攷慮呎度因素和方嚮能量因素的基礎上對萎縮因子進行脩正併將之應用于小波繫數萎縮過程中,最後通過逆變換得到降譟和增彊的圖像.試驗結果錶明,在損失較小峰值信譟比值的情況下,提齣的方法在增彊圖像細節和邊緣、加大圖像對比度等方麵要優于直接比例萎縮,能夠穫得較好的視覺效果.給齣的小波繫數增彊思想可以應用于基于其它降譟準則的比例萎縮算法中.
침대소파역비례위축강조방법재거제조성적동시야약화료도상세절화변연적결함,제출료구유증강효과적기우최대후험개솔준칙적소파역자괄응강조산법,병장지응용우홍외도상강조중.해산법재가정도상계수화조성계수선험위고사분포적기출상,이용최대후험개솔준칙계산소파계수적위축인자,연후재고필척도인소화방향능량인소적기출상대위축인자진행수정병장지응용우소파계수위축과정중,최후통과역변환득도강조화증강적도상.시험결과표명,재손실교소봉치신조비치적정황하,제출적방법재증강도상세절화변연、가대도상대비도등방면요우우직접비례위축,능구획득교호적시각효과.급출적소파계수증강사상가이응용우기우기타강조준칙적비례위축산법중.
In order to solve the fault of weakening the detail and edge of image while denoising in wavelet domain,this paper presented an adaptive denoising algorithm with detail enhancing and applied it to infrared image.On the basis of the assumption that the prior distribution of the original image coefficients and the noise coefficients were both Gaussian,this method firstly made use of the rule of Maximum a Posteriori to compute the shrinkable factor for wavelet coefficients,then revised it by taking decomposable level and directional energy into account.Finally,a denoising and enhancing image could be obtained when the wavelet coefficients which were shrunk by the revised shrinkable factor experienced the reverse transform.The experimental results show that the method given by this paper,compared with the direct proportional shrinkage,can enhance image's detail and improve image's contrast and get better visual effect though it has a little loss of Peak Signal Noise Ratio.The idea of coefficients' enhancement in wavelet domain proposed by this paper can apply to other proportional shrinkable algorithms.