动力工程
動力工程
동력공정
POWER ENGINEERING
2009年
11期
1051-1056,1066
,共7页
宋士娟%刘锦辉%辛成运%鲍静静%杨林军
宋士娟%劉錦輝%辛成運%鮑靜靜%楊林軍
송사연%류금휘%신성운%포정정%양림군
喷雾干燥%烟气脱硫%细颗粒%排放特性%蒸汽相变
噴霧榦燥%煙氣脫硫%細顆粒%排放特性%蒸汽相變
분무간조%연기탈류%세과립%배방특성%증기상변
spray-drying%flue gas desulfurization%fine particle%emission characteristic%heterogeneous condensation
采用电称低压冲击器和场发射扫描电镜等对喷雾干燥脱硫前后烟气中细颗粒的数量浓度、粒径分布、形态及元素组成进行了测试分析,考察了喷雾干燥烟气脱硫工艺对细颗粒排放特性的影响.在此基础上,采用 5 种不同的细颗粒脱除工艺,进行了利用蒸汽相变原理促进细颗粒凝结长大并脱除的试验研究.结果表明:在喷雾干燥烟气脱硫过程中,Ca(OH)_2 浆液与S0_2 反应生成的部分 CaSO_4、CaSO_3 及未反应的 CaO 细颗粒可随烟气排出脱硫反应塔,脱硫后细颗粒光滑分散,Ca、S 元素含量增加且细颗粒数量浓度提高;在脱硫反应塔出口的高湿烟气中添加适量蒸汽并降低烟气温度,由此建立蒸汽相变所需的过饱和水汽环境可促进细颗粒的脱除,脱除效率随蒸汽添加量的增加而提高.
採用電稱低壓遲擊器和場髮射掃描電鏡等對噴霧榦燥脫硫前後煙氣中細顆粒的數量濃度、粒徑分佈、形態及元素組成進行瞭測試分析,攷察瞭噴霧榦燥煙氣脫硫工藝對細顆粒排放特性的影響.在此基礎上,採用 5 種不同的細顆粒脫除工藝,進行瞭利用蒸汽相變原理促進細顆粒凝結長大併脫除的試驗研究.結果錶明:在噴霧榦燥煙氣脫硫過程中,Ca(OH)_2 漿液與S0_2 反應生成的部分 CaSO_4、CaSO_3 及未反應的 CaO 細顆粒可隨煙氣排齣脫硫反應塔,脫硫後細顆粒光滑分散,Ca、S 元素含量增加且細顆粒數量濃度提高;在脫硫反應塔齣口的高濕煙氣中添加適量蒸汽併降低煙氣溫度,由此建立蒸汽相變所需的過飽和水汽環境可促進細顆粒的脫除,脫除效率隨蒸汽添加量的增加而提高.
채용전칭저압충격기화장발사소묘전경등대분무간조탈류전후연기중세과립적수량농도、립경분포、형태급원소조성진행료측시분석,고찰료분무간조연기탈류공예대세과립배방특성적영향.재차기출상,채용 5 충불동적세과립탈제공예,진행료이용증기상변원리촉진세과립응결장대병탈제적시험연구.결과표명:재분무간조연기탈류과정중,Ca(OH)_2 장액여S0_2 반응생성적부분 CaSO_4、CaSO_3 급미반응적 CaO 세과립가수연기배출탈류반응탑,탈류후세과립광활분산,Ca、S 원소함량증가차세과립수량농도제고;재탈류반응탑출구적고습연기중첨가괄량증기병강저연기온도,유차건립증기상변소수적과포화수기배경가촉진세과립적탈제,탈제효솔수증기첨가량적증가이제고.
The number concentration, size distribution, morphology and element composition of fine particles in flue gas before and after spsay-drying desulfurization were measured respectively using electrical low pressure impactor (ELPI) and field emission scanning electron microscope/energy dispersive spectrometry (FESEM-EDS), so as to study the influence of spray-drying desulfurization technology on the emission characteristics of fine particles. Subsequently, experimental tests were carried out for removal of fine particles by heterogeneous condensation based on five different processes. Results show that after
desulfurization, fine particles become smooth and scattered, and the content of element Ca and S increases obviously, while the number concentration of fine particles rises slightly. This effect can be attributed to CaSO_4, CaSO_3 (formed by reaction of Ca(OH)_2 with SO_2) and unreacted CaO entering into the flue gas as fine particles. By properly adding steam into the flue gas and lowering the gas temperature at outlet of the desulfurization tower so as to establish a supersaturated condition, fine particles can be removed efficiently, during which the removal efficiency increases with the rising amount of added steam.