石油化工
石油化工
석유화공
PETROCHEMICAL TECHNOLOGY
2009年
12期
1286-1291
,共6页
张臣%刘述梅%黄君仪%赵建青%张杰元%徐冠军
張臣%劉述梅%黃君儀%趙建青%張傑元%徐冠軍
장신%류술매%황군의%조건청%장걸원%서관군
苯基磷酸二(乙二醇)酯%反应型含磷不饱和聚酯%阻燃剂%固化特性
苯基燐痠二(乙二醇)酯%反應型含燐不飽和聚酯%阻燃劑%固化特性
분기린산이(을이순)지%반응형함린불포화취지%조연제%고화특성
bis(hydroxyethyl)phenylphosphonate%reactive phosphorus-containing unsaturated polyester resin%flame retardant%curing characteristic
以苯基磷酰二氯和乙二醇为原料合成了苯基磷酸二(乙二醇)酯(BHEPP),将其与1,2-丙二醇、顺丁烯二酸酐和邻苯二甲酸酐共聚,得到了反应型含磷阻燃不饱和聚酯(P-UPR).当P-UPR固化物中磷的质量分数为2.66%时,固化产物的极限氧指数为29,阻燃效果达到UL94 V-0级.热重分析结果表明,当反应单体中BHEPP的质量分数由0增至35%时,固化后的P-UPR在氮气和空气气氛中的起始分解温度分别下降了32.2 ℃和63.9 ℃,最大热分解温度分别下降了52.3 ℃和54.0 ℃.用示差扫描量热分析仪测试了P-UPR的非等温固化过程,根据Kamal模型计算转化率(α)和时间的关系曲线,当0.1<α<0.8时,固化反应由动力学控制;当α>0.8时,固化反应由扩散效应控制,在固化过程初期,无固化延迟效应.
以苯基燐酰二氯和乙二醇為原料閤成瞭苯基燐痠二(乙二醇)酯(BHEPP),將其與1,2-丙二醇、順丁烯二痠酐和鄰苯二甲痠酐共聚,得到瞭反應型含燐阻燃不飽和聚酯(P-UPR).噹P-UPR固化物中燐的質量分數為2.66%時,固化產物的極限氧指數為29,阻燃效果達到UL94 V-0級.熱重分析結果錶明,噹反應單體中BHEPP的質量分數由0增至35%時,固化後的P-UPR在氮氣和空氣氣氛中的起始分解溫度分彆下降瞭32.2 ℃和63.9 ℃,最大熱分解溫度分彆下降瞭52.3 ℃和54.0 ℃.用示差掃描量熱分析儀測試瞭P-UPR的非等溫固化過程,根據Kamal模型計算轉化率(α)和時間的關繫麯線,噹0.1<α<0.8時,固化反應由動力學控製;噹α>0.8時,固化反應由擴散效應控製,在固化過程初期,無固化延遲效應.
이분기린선이록화을이순위원료합성료분기린산이(을이순)지(BHEPP),장기여1,2-병이순、순정희이산항화린분이갑산항공취,득도료반응형함린조연불포화취지(P-UPR).당P-UPR고화물중린적질량분수위2.66%시,고화산물적겁한양지수위29,조연효과체도UL94 V-0급.열중분석결과표명,당반응단체중BHEPP적질량분수유0증지35%시,고화후적P-UPR재담기화공기기분중적기시분해온도분별하강료32.2 ℃화63.9 ℃,최대열분해온도분별하강료52.3 ℃화54.0 ℃.용시차소묘량열분석의측시료P-UPR적비등온고화과정,근거Kamal모형계산전화솔(α)화시간적관계곡선,당0.1<α<0.8시,고화반응유동역학공제;당α>0.8시,고화반응유확산효응공제,재고화과정초기,무고화연지효응.
A reactive flame-retardant phosphorus-containing unsaturated polyester resin(P-UPR) was prepared by polycondensation of maleic anhydride, phthalic anhydride, propylene glycol and bis(hydroxyethyl)phenylphosphonate(BHEPP). The latter was synthesized from phenyl phosphonic dichloride and ethylene glycol. The specifications of UL94 V-0 rating and limiting oxygen index of 29 were achieved when mass fraction of phophorus was 2.66% (based on the P-UPR mass) in the cured P-UPR. The TGA results showed that with the increase of BHEPP mass fraction(based on total mass of monomers) from 0 to 35%, the initial decomposition temperature of cured P-UPR lowered by 32.2 ℃ in N2 and 63.9 ℃ in air, and the maximum decomposition temperature lowered by 52.3 ℃ in N2 and 54.0 ℃ in air. The non-isothermal curing behavior of P-UPR was studied by DSC. According to the plot of conversion (α) versus time calculated by Kamal's equation, the curing process of UPR was controlled by kinetics with 0.1<α<0.8 and by diffusion with α> 0.8. No delay effect appeared in the initial curing stage.