机械工程学报
機械工程學報
궤계공정학보
CHINESE JOURNAL OF MECHANICAL ENGINEERING
2010年
2期
111-118
,共8页
张周卫%厉彦忠%汪雅红%陈光奇%葛瑞宏%潘雁频
張週衛%厲彥忠%汪雅紅%陳光奇%葛瑞宏%潘雁頻
장주위%려언충%왕아홍%진광기%갈서굉%반안빈
冷屏%红外辐射%当量辐射%液氮
冷屏%紅外輻射%噹量輻射%液氮
랭병%홍외복사%당량복사%액담
Cold shield%Infrared radiation%Equivalent radiation%Liquid nitrogen
应用低温冷屏蔽方法可以降低空间飞行器表面红外辐射强度.建立分层贮液及气流分离空间冷屏蔽系统模型,应用流场数值模拟参数计算对流换热经验关联式并获得不同边界对流换热系数,将对流边界条件代入稳态传热数值模拟过程并得到液相区及气相区表面温度分布规律.建立单元传热试验模型,应用当量分析法对试验模型天地一致性进行分析,结果表明:极端状态下分层贮液高度小于100 mm时传热模拟表面最大温度92.9 K,流场最大温度107 K,试验最大温度180 K,受当量辐射影响,试验温度梯度与模拟梯度外形相似但大于模拟温度梯度;试验当量辐射接近1 592.6 W/m~2,地面液氮维持时间15 min,空间维持时间大于30 min;分层贮液模型能够使空间飞行器在特定时间段内表面温度低于100 K,红外辐射强度低于0.5 W/m~2.
應用低溫冷屏蔽方法可以降低空間飛行器錶麵紅外輻射彊度.建立分層貯液及氣流分離空間冷屏蔽繫統模型,應用流場數值模擬參數計算對流換熱經驗關聯式併穫得不同邊界對流換熱繫數,將對流邊界條件代入穩態傳熱數值模擬過程併得到液相區及氣相區錶麵溫度分佈規律.建立單元傳熱試驗模型,應用噹量分析法對試驗模型天地一緻性進行分析,結果錶明:極耑狀態下分層貯液高度小于100 mm時傳熱模擬錶麵最大溫度92.9 K,流場最大溫度107 K,試驗最大溫度180 K,受噹量輻射影響,試驗溫度梯度與模擬梯度外形相似但大于模擬溫度梯度;試驗噹量輻射接近1 592.6 W/m~2,地麵液氮維持時間15 min,空間維持時間大于30 min;分層貯液模型能夠使空間飛行器在特定時間段內錶麵溫度低于100 K,紅外輻射彊度低于0.5 W/m~2.
응용저온랭병폐방법가이강저공간비행기표면홍외복사강도.건립분층저액급기류분리공간랭병폐계통모형,응용류장수치모의삼수계산대류환열경험관련식병획득불동변계대류환열계수,장대류변계조건대입은태전열수치모의과정병득도액상구급기상구표면온도분포규률.건립단원전열시험모형,응용당량분석법대시험모형천지일치성진행분석,결과표명:겁단상태하분층저액고도소우100 mm시전열모의표면최대온도92.9 K,류장최대온도107 K,시험최대온도180 K,수당량복사영향,시험온도제도여모의제도외형상사단대우모의온도제도;시험당량복사접근1 592.6 W/m~2,지면액담유지시간15 min,공간유지시간대우30 min;분층저액모형능구사공간비행기재특정시간단내표면온도저우100 K,홍외복사강도저우0.5 W/m~2.
Using the cryogenic cold shield method can decrease the exterior infrared intensity of spacecraft. A model of layered reservoir and gas-liquid separated spatial cold-shield is established. Numerical simulation parameters of flow field are used to calculate the empirical heat convectional relations and obtain convectional coefficients on different boundary conditions, and by substituting different boundary conditions to steady-state heat-transfer simulation process, the regularity of temperature distribution in gas area and liquid area is obtained. A unit heat transfer test model is established, and equivalent radiation method is used to analyze the consistency of the test model in ground and in space. The results show that the maximum temperature reaches 92.9 K from heat-transfer simulation, 107 K from flow-field simulation, and 180 K from experiment in extreme condition when the height of layered reservoir is less than 100 mm. The experimental temperature gradients are similar to the simulated results in shape but larger than simulated results due to the influence of equivalent radiation. The equivalent radiation is close to 1 592.6 W/m~2, liquid nitrogen maintains 15min on the ground and more than 30 min in space. The layered reservoir model can make the surface temperature of aircraft lower than 100 K and the infrared radiation lower than 0.5 W/m~2 in specific time period in space.