中华核医学与分子影像杂志
中華覈醫學與分子影像雜誌
중화핵의학여분자영상잡지
Chinese Journal of Nuclear Medicine and Molecular Imaging
2012年
4期
294-297
,共4页
林琳%郑容%王奕斌%耿建华%吴宁%赵平
林琳%鄭容%王奕斌%耿建華%吳寧%趙平
림림%정용%왕혁빈%경건화%오저%조평
肿瘤%放射疗法%体层摄影术,发射型计算机%体层摄影术,X线计算机%靶区勾画%模型,结构
腫瘤%放射療法%體層攝影術,髮射型計算機%體層攝影術,X線計算機%靶區勾畫%模型,結構
종류%방사요법%체층섭영술,발사형계산궤%체층섭영술,X선계산궤%파구구화%모형,결구
Neoplasms%Radiotherapy%Tomography,emission-computed%Tomography,X-ray computed%Target delineation%Models,theoretical
目的 通过模型实验推导出在18F-FDG PET/CT的PET图像上确定放疗靶区边界阈值的公式.方法 向容积为9L的圆柱状模型内体积分别为0.5、1、2、4、8和16 ml的6个球体内注入浓度为203.5 MBq/L的18F-FDG,圆柱状模型其他空间注入浓度为6.179或16.021 MBq/L的18 FFDG溶液或无放射性的纯净水作为本底,形成靶/本底比值分别为32.96∶1、12.69∶1或热球零本底的3个实验条件.对各实验条件下的模型行PET/CT显像,研究球状热灶的边界阈值与热球ROI内平均放射性浓度的关系,推导出线性公式,并将其应用于勾画已知体积的热球模型,以t检验比较公式法及40%阈值法(以热球最大放射性计数的40%为热球模型边界)的勾画体积与真实体积的差异.结果 热球的边界阈值(y)与热球ROI内平均放射性浓度(x)呈线性相关:y=(x+2.6227)/1.9752.勾画热球模型时,公式法的勾画体积与真实体积的平均差值为2.83%,小于40%阈值法的平均差值3.55%,但二者之间差异无统计学意义(t=0.306,P>0.05).体积的影响:公式法勾画热球模型时,当球体积≥1ml时,勾画体积与真实体积间的平均差值为1.01%;当球体积为0.5ml时,相应差值达9.53%.而40%阈值法勾画时,当球体积≥2 ml时,勾画体积与真实体积间的平均差值为-4.62%;但当体积为0.5及1 ml时,平均差值达19.9%.靶/本底比值的影响:公式法勾画热球模型时,当球体积≥1 ml时,3种不同的靶本底比值下勾画体积与真实体积间的平均差值分别为2.66%、1.11%和-0.74%,三者之间差异无统计学意义(t值分别为1.373、2.798和1.328,P均>0.05);而40%阈值法勾画时,当球体积≥2ml时,随着靶本底比值的降低,勾画体积与真实体积间的平均差值逐渐减小.结论 热灶的边界阈值与热灶ROI内平均放射性浓度密切相关,由此得出的线性公式可较准确地勾画体积≥1ml的热球模型的边界.当热球体积≥1ml时,靶/本底比值对公式法勾画热球边界无明显影响.
目的 通過模型實驗推導齣在18F-FDG PET/CT的PET圖像上確定放療靶區邊界閾值的公式.方法 嚮容積為9L的圓柱狀模型內體積分彆為0.5、1、2、4、8和16 ml的6箇毬體內註入濃度為203.5 MBq/L的18F-FDG,圓柱狀模型其他空間註入濃度為6.179或16.021 MBq/L的18 FFDG溶液或無放射性的純淨水作為本底,形成靶/本底比值分彆為32.96∶1、12.69∶1或熱毬零本底的3箇實驗條件.對各實驗條件下的模型行PET/CT顯像,研究毬狀熱竈的邊界閾值與熱毬ROI內平均放射性濃度的關繫,推導齣線性公式,併將其應用于勾畫已知體積的熱毬模型,以t檢驗比較公式法及40%閾值法(以熱毬最大放射性計數的40%為熱毬模型邊界)的勾畫體積與真實體積的差異.結果 熱毬的邊界閾值(y)與熱毬ROI內平均放射性濃度(x)呈線性相關:y=(x+2.6227)/1.9752.勾畫熱毬模型時,公式法的勾畫體積與真實體積的平均差值為2.83%,小于40%閾值法的平均差值3.55%,但二者之間差異無統計學意義(t=0.306,P>0.05).體積的影響:公式法勾畫熱毬模型時,噹毬體積≥1ml時,勾畫體積與真實體積間的平均差值為1.01%;噹毬體積為0.5ml時,相應差值達9.53%.而40%閾值法勾畫時,噹毬體積≥2 ml時,勾畫體積與真實體積間的平均差值為-4.62%;但噹體積為0.5及1 ml時,平均差值達19.9%.靶/本底比值的影響:公式法勾畫熱毬模型時,噹毬體積≥1 ml時,3種不同的靶本底比值下勾畫體積與真實體積間的平均差值分彆為2.66%、1.11%和-0.74%,三者之間差異無統計學意義(t值分彆為1.373、2.798和1.328,P均>0.05);而40%閾值法勾畫時,噹毬體積≥2ml時,隨著靶本底比值的降低,勾畫體積與真實體積間的平均差值逐漸減小.結論 熱竈的邊界閾值與熱竈ROI內平均放射性濃度密切相關,由此得齣的線性公式可較準確地勾畫體積≥1ml的熱毬模型的邊界.噹熱毬體積≥1ml時,靶/本底比值對公式法勾畫熱毬邊界無明顯影響.
목적 통과모형실험추도출재18F-FDG PET/CT적PET도상상학정방료파구변계역치적공식.방법 향용적위9L적원주상모형내체적분별위0.5、1、2、4、8화16 ml적6개구체내주입농도위203.5 MBq/L적18F-FDG,원주상모형기타공간주입농도위6.179혹16.021 MBq/L적18 FFDG용액혹무방사성적순정수작위본저,형성파/본저비치분별위32.96∶1、12.69∶1혹열구령본저적3개실험조건.대각실험조건하적모형행PET/CT현상,연구구상열조적변계역치여열구ROI내평균방사성농도적관계,추도출선성공식,병장기응용우구화이지체적적열구모형,이t검험비교공식법급40%역치법(이열구최대방사성계수적40%위열구모형변계)적구화체적여진실체적적차이.결과 열구적변계역치(y)여열구ROI내평균방사성농도(x)정선성상관:y=(x+2.6227)/1.9752.구화열구모형시,공식법적구화체적여진실체적적평균차치위2.83%,소우40%역치법적평균차치3.55%,단이자지간차이무통계학의의(t=0.306,P>0.05).체적적영향:공식법구화열구모형시,당구체적≥1ml시,구화체적여진실체적간적평균차치위1.01%;당구체적위0.5ml시,상응차치체9.53%.이40%역치법구화시,당구체적≥2 ml시,구화체적여진실체적간적평균차치위-4.62%;단당체적위0.5급1 ml시,평균차치체19.9%.파/본저비치적영향:공식법구화열구모형시,당구체적≥1 ml시,3충불동적파본저비치하구화체적여진실체적간적평균차치분별위2.66%、1.11%화-0.74%,삼자지간차이무통계학의의(t치분별위1.373、2.798화1.328,P균>0.05);이40%역치법구화시,당구체적≥2ml시,수착파본저비치적강저,구화체적여진실체적간적평균차치축점감소.결론 열조적변계역치여열조ROI내평균방사성농도밀절상관,유차득출적선성공식가교준학지구화체적≥1ml적열구모형적변계.당열구체적≥1ml시,파/본저비치대공식법구화열구변계무명현영향.
Objective To propose a model-based method for calculating the threshold in GTV determination by 18 F-FDG PET in a phantom study.Methods A phantom was constructed of a 9 L cylindrical tank.Glass spheres with volumes ranging from 0.5 to 16 ml (0.5,1,2,4,8 and 16 ml) were suspended within the tank.The six spheres were filled with an identical concentration of FDG ( 203.5 MBq/L) and suspended within 3 different background baths of FDG (6.179,16.021,0 MBq/L) solutions,creating 3 target-to-background ratios of 32.96∶ 1,12.69∶1 and target to zero background.A linear regressive function was constructed which represented the relationship between the threshold and the average activity concentration of the target.A 40% of maximum intensity threshold and the linear regressive function method were applied to define the spheres filled with 18F-FDG.The volume differences between the two methods and the true volumes of the spheres were compared with t-test.Results The linear regressive function model was derived as:threshold =(mean target concentration + 2.6227)/1.9752.The results indicated that a smaller deviation occurred when the function was utilized to estimate the volumes of the phantoms as compared to the 40% of maximum intensity threshold method,but there were no significant differences between them ( t =0.306,P > 0.05 ).The effect of the linear regressive function on volume was such that when the phantom sphere volumes were ≥ 1 ml,the average deviation between the defined volumes and the true volumes of phantoms was 1.01% ; but when the phantom sphere volume was 0.5 ml,the average deviation was 9.53%.When the 40% of maximum intensity threshold method was applied to define the phantom spheres of volume≥2 ml,the average deviation between the defined volumes and the true volumes of phantoms was -4.62% ; but,the average deviation of that was 19.9% when the volumes of spheres were 0.5 and 1 ml.When the linear regressive function was applied to phantom spheres with volume ≥ 1 ml,the effect of targetto-background ratios on volume estimation was such that the average deviation between the defined volumes and the true volumes of phantoms were 2.66%,1.11%, - 0.74% under 3 target-to-background ratios,which showed no statistically significant differences among them (t values were 1.373,2.798,1.328,all P >0.05 ).When the 40% of maximum intensity threshold method was applied to define the phantom spheres of volumes ≥2 ml,the average deviation between the defined volumes and the true volumes of phantoms decreased in parallel to the decreasing target-to-background ratios.Conclusions The threshold constructed by the linear regression function was strongly dependent on the mean target concentration,and the function can be adequately applied to estimate phantoms with volume≥ 1 ml.Target-to-background ratios had no obvious effect on the linear regressive function method when the volumes of the spheres were above 1 ml.