模糊系统与数学
模糊繫統與數學
모호계통여수학
FUZZY SYSTEMS AND MATHEMATICS
2010年
1期
23-28
,共6页
余剩余格%正则余剩余格%BCK-代数%对合BCK-格
餘剩餘格%正則餘剩餘格%BCK-代數%對閤BCK-格
여잉여격%정칙여잉여격%BCK-대수%대합BCK-격
Co-residuated Lattice%Regular Co-residuated Lattice%BCK-algebra%Involutory BCK-lattice
进一步研究了余剩余格的一些性质, 在此基础上证明了正则余剩余格与对合BCK-格是两个等价的代数系统.所得结果将有助于深入了解正则余剩余格的代数结构,也为相关多值逻辑系统的研究提供又一途径.
進一步研究瞭餘剩餘格的一些性質, 在此基礎上證明瞭正則餘剩餘格與對閤BCK-格是兩箇等價的代數繫統.所得結果將有助于深入瞭解正則餘剩餘格的代數結構,也為相關多值邏輯繫統的研究提供又一途徑.
진일보연구료여잉여격적일사성질, 재차기출상증명료정칙여잉여격여대합BCK-격시량개등개적대수계통.소득결과장유조우심입료해정칙여잉여격적대수결구,야위상관다치라집계통적연구제공우일도경.
In this paper, some properties of the co-residuated lattices are further discussed, and based on this, it is proved that regular co-residuated lattices are equivalent to involutory BCK-lattices. These results will be useful for further studying the interior structures of regular co-residuated lattices, and also offer a new way for researching relative many-valued logic systems.