生态学报
生態學報
생태학보
ACTA ECOLOGICA SINICA
2009年
11期
6077-6084
,共8页
油松%灌木%含碳率%生物量模型%碳吸存
油鬆%灌木%含碳率%生物量模型%碳吸存
유송%관목%함탄솔%생물량모형%탄흡존
Pinus tabulaeformis%shrub%carbon content ratio%biomass models%carbon sequestration
林下灌木是森林生态系统的重要组成部分,在维持森林碳平衡中发挥着重要作用.为估算林下灌木的固碳功能,采用TOC-VT H-2000A型TOC/TON分析仪,测定了油松林下主要灌木不同器官的含碳率;根据野外实测资料,建立了油松群落内主要灌木测树因子与其器官生物量的回归模型;计算了2006年和2007年,灌木层CO_2年吸存量.结果表明:5种灌木叶、茎、根和皮的平均含碳率为:41.80%~46.25%,39.24%~49.22%,39.56%~46.71%和36.65%~48.23%;刚毛忍冬(Lonicera Hispida pall)各器官的含碳率最高,栓翅卫矛(Euonymus alatus)的叶和茎,白檀 (Symplocos paniculata)的根和皮含碳率最低;不同灌木同一器官和同一灌木不同器官的含碳率均存在显著差异;不同灌木同一器官平均含碳率差值最高达10.58%,同一灌木不同器官平均含碳率差值最高达6.47%;模拟显示:灌木器官的生物量和测树因子间的关系可用复合式、幂、二次方程、三次方程、对数方程、指数方程和倒数方程来描述;残差和误差分析表明,均方差根不大于1.70,模型有效性指数均接近于1,残差系数均接近于0,灌木根、茎、叶和皮的生物量模型估计值与实测值间相对误差的绝对值分别为3.89%~8.58%,0.57%~6.84%,4.69%~9.09%和4.50%~7.03%.回归模型的决定系数(R~2)都在0.90以上,估计精度在95%以上,建立的油松群落内主要灌木测树因子与其器官生物量的回归模型,具有较高的估计精度和较好的适用性;研究区2006~2007年,主要灌木CO_2年吸存量为10.138 Mghm~(-2).
林下灌木是森林生態繫統的重要組成部分,在維持森林碳平衡中髮揮著重要作用.為估算林下灌木的固碳功能,採用TOC-VT H-2000A型TOC/TON分析儀,測定瞭油鬆林下主要灌木不同器官的含碳率;根據野外實測資料,建立瞭油鬆群落內主要灌木測樹因子與其器官生物量的迴歸模型;計算瞭2006年和2007年,灌木層CO_2年吸存量.結果錶明:5種灌木葉、莖、根和皮的平均含碳率為:41.80%~46.25%,39.24%~49.22%,39.56%~46.71%和36.65%~48.23%;剛毛忍鼕(Lonicera Hispida pall)各器官的含碳率最高,栓翅衛矛(Euonymus alatus)的葉和莖,白檀 (Symplocos paniculata)的根和皮含碳率最低;不同灌木同一器官和同一灌木不同器官的含碳率均存在顯著差異;不同灌木同一器官平均含碳率差值最高達10.58%,同一灌木不同器官平均含碳率差值最高達6.47%;模擬顯示:灌木器官的生物量和測樹因子間的關繫可用複閤式、冪、二次方程、三次方程、對數方程、指數方程和倒數方程來描述;殘差和誤差分析錶明,均方差根不大于1.70,模型有效性指數均接近于1,殘差繫數均接近于0,灌木根、莖、葉和皮的生物量模型估計值與實測值間相對誤差的絕對值分彆為3.89%~8.58%,0.57%~6.84%,4.69%~9.09%和4.50%~7.03%.迴歸模型的決定繫數(R~2)都在0.90以上,估計精度在95%以上,建立的油鬆群落內主要灌木測樹因子與其器官生物量的迴歸模型,具有較高的估計精度和較好的適用性;研究區2006~2007年,主要灌木CO_2年吸存量為10.138 Mghm~(-2).
림하관목시삼림생태계통적중요조성부분,재유지삼림탄평형중발휘착중요작용.위고산림하관목적고탄공능,채용TOC-VT H-2000A형TOC/TON분석의,측정료유송림하주요관목불동기관적함탄솔;근거야외실측자료,건립료유송군락내주요관목측수인자여기기관생물량적회귀모형;계산료2006년화2007년,관목층CO_2년흡존량.결과표명:5충관목협、경、근화피적평균함탄솔위:41.80%~46.25%,39.24%~49.22%,39.56%~46.71%화36.65%~48.23%;강모인동(Lonicera Hispida pall)각기관적함탄솔최고,전시위모(Euonymus alatus)적협화경,백단 (Symplocos paniculata)적근화피함탄솔최저;불동관목동일기관화동일관목불동기관적함탄솔균존재현저차이;불동관목동일기관평균함탄솔차치최고체10.58%,동일관목불동기관평균함탄솔차치최고체6.47%;모의현시:관목기관적생물량화측수인자간적관계가용복합식、멱、이차방정、삼차방정、대수방정、지수방정화도수방정래묘술;잔차화오차분석표명,균방차근불대우1.70,모형유효성지수균접근우1,잔차계수균접근우0,관목근、경、협화피적생물량모형고계치여실측치간상대오차적절대치분별위3.89%~8.58%,0.57%~6.84%,4.69%~9.09%화4.50%~7.03%.회귀모형적결정계수(R~2)도재0.90이상,고계정도재95%이상,건립적유송군락내주요관목측수인자여기기관생물량적회귀모형,구유교고적고계정도화교호적괄용성;연구구2006~2007년,주요관목CO_2년흡존량위10.138 Mghm~(-2).
Understorey shrub species play a vital role in maintaining the carbon balance between a forest ecosystem and the atmosphere. To estimate the amount of CO_2 sequestrated by shrub species, samples were collected from 294 plots at the Qinling National Forest Ecosystem Research Station, Huoditang forest zone, Ningshaan County, China (33°18′-33°28′ N, 109°20′ -109°29′ E). The carbon content ratio (CCR) of shrub organs was measured using a TOC/TON analyzer (TOC-VT H-2000A, Shimadzu Corporation, Japan). Biomass models describing the relationship among shrub organs and their morphological indices (height, DBH, canopy width, etc.) were established. The amount of carbon dioxide sequestrated by the shrub species between 2006 and 2007 was calculated. The CCR in five shrub species ranged from 41.80%-46.25% (roots), 39.24%-49.22% (stems), 39.56% to 46.71% (leaves), and 36.65%-48.23% (tegument), respectively. The highest CCR value occurred in all the organs of Lonicera hispida pall. The lowest CCR values were obtained from the leaves and stem of Euonymus phellomas, and the root and tegument of Symplocos paniculata. Significant differences in the CCR occurred both in the same organs of various shrub species and in the various organs of the same shrub species. The greatest difference in the mean CCR of the same organ among different shrub species and various organs of the same shrub species was 10.58% and 6.47%, respectively. The relationship of organ biomass to the morphological indices of different shrub species could be better shown using compound, power, quadratic, cubic, logarithmic, exponential and inverse models, respectively. Residual errors were analyzed.The maximum value of RMSE (root mean square error) was not more than 1.70. All EF (modeling efficiency)and CRM(coefficient of residual mass)values were close to 1 and 0, respectively. The absolute values for relative error in shrub organ biomass between the model-estimated and the field-measured ranged from 3.89%-8.58% (roots), 0.57%-6.84% (stems), 4.69%-9.09% (leaves) and 4.50%-7.03% (tegument). The models′ determining coefficients and estimating accuracy exceeded 0.90 and 95%, respectively. Residual and error analysis demonstrated that these models achieved higher accuracy and had better applicability. However, the samples are from special forest types (Pinus tabulaeformis forest and mixed forests of Pinus tabulaeformis and Quercus aliena var. Acuteserrata) in the experimental area and the indices are limited in some scale. These models could not be used generally. Moreover, no model could be fit to the relationship of organ biomass and the morphological indices of fasciculate shrub species (such as Rosa swginzowii, etc.) making CO_2 sequestration difficult to estimate. Between 2006 and 2007, in the experimental area, the main understorey shrub species in the Pinus tabulaeformis forest sequestrated 10.138 Mghm-2year-1of carbon dioxide.