四川大学学报(自然科学版)
四川大學學報(自然科學版)
사천대학학보(자연과학판)
JOURNAL OF SICHUAN UNIVERSITY
2009年
6期
1650-1654
,共5页
王亚强%金晖%于中华%蒋永光%张学红
王亞彊%金暉%于中華%蔣永光%張學紅
왕아강%금휘%우중화%장영광%장학홍
数据挖掘%关联规则%置信度%症状组团%中医学
數據挖掘%關聯規則%置信度%癥狀組糰%中醫學
수거알굴%관련규칙%치신도%증상조단%중의학
data mining%association rules%confidence%symptom groups%Traditional Chinese Medicine
症状组团分析是中医学研究的热点问题,具有重要的理论意义和临床应用价值,也是中医诊断进一步发展的基础,目前尚处于探索阶段.本文以数据挖掘为技术手段,提出了基于关联规则的中医症状组团分析算法,该算法通过分析证素与证候、证候与症状的关联关系,得出症状与症状之间的联系,从而自动发现具有相似或相同意义的症状组团.充分的实验结果表明,所提出的算法可以有效地发现症状组团,准确率达到85.11%.
癥狀組糰分析是中醫學研究的熱點問題,具有重要的理論意義和臨床應用價值,也是中醫診斷進一步髮展的基礎,目前尚處于探索階段.本文以數據挖掘為技術手段,提齣瞭基于關聯規則的中醫癥狀組糰分析算法,該算法通過分析證素與證候、證候與癥狀的關聯關繫,得齣癥狀與癥狀之間的聯繫,從而自動髮現具有相似或相同意義的癥狀組糰.充分的實驗結果錶明,所提齣的算法可以有效地髮現癥狀組糰,準確率達到85.11%.
증상조단분석시중의학연구적열점문제,구유중요적이론의의화림상응용개치,야시중의진단진일보발전적기출,목전상처우탐색계단.본문이수거알굴위기술수단,제출료기우관련규칙적중의증상조단분석산법,해산법통과분석증소여증후、증후여증상적관련관계,득출증상여증상지간적련계,종이자동발현구유상사혹상동의의적증상조단.충분적실험결과표명,소제출적산법가이유효지발현증상조단,준학솔체도85.11%.
Analysis of Symptom Groups is one of the hot research topics in TCM (Traditional Chinese Medicine) and is now at the stage of exploration. It is the most fundamental problem for TCM diagnosis and significant for TCM theory and clinical practice. To find symptom groups automatically, an algorithm based on association rules is proposed in this paper according to data mining technology. The algorithm discoveries the groups consisting of the symptoms that have same or similar meaning by analyzing relationship between syndrome factors and syndromes, and relationship between syndromes and symptoms. The extensive experiments show that the algorithm could effectively find the symptom groups and its accuracy rate reaches up to 85.11%.