水科学进展
水科學進展
수과학진전
2010年
1期
16-22
,共7页
氢氧同位素%降水线%降水-土壤水-地下水转化%实验研究%黄土丘陵区
氫氧同位素%降水線%降水-土壤水-地下水轉化%實驗研究%黃土丘陵區
경양동위소%강수선%강수-토양수-지하수전화%실험연구%황토구릉구
δD and δ~(18)O isotope%meteoric water line%precipitation-soil water-groundwater trans for mation%experimental study%loess hilly region
通过对黄土丘陵区燕沟流域2005~2007年雨季的多次降水、0~400cm土层土壤水、沟道地表水、地下水(泉水、井水)水样中D和~(18)O采样分析, 研究了该区降水、土壤水、地表水、地下水的转化关系.结果认为:燕沟流域的降水线与中国、世界的降水线有明显区别,斜率和截距偏小;降水、地表水、土壤水、地下水逐渐富集δD和δ~(18)O,且δ~(18)O富集速度高于δD, 由D和~(18)O的蒸发分馏差异所致,可利用各类水体的δD和δ~(18)O变化情况甄别水体之间的水量转化;土壤水δD和δ~(18)O剖面在200cm深度处出现低值区,应是降水补给到达该深度且土壤蒸发影响逐渐衰减共同作用的结果, 其在200cm以下逐渐升高则因为降水补给影响逐渐降低、土壤水本底同位素影响增强所致.由于380 ~400cm深层土壤水的δD和δ~(18)O对降水事件的响应存在,因此认为降水-地下水的转化存在,降水补给泉水的滞后期小于35d.而对井水的补给滞后时间以及土壤水对地下水的补给量还需进一步研究.
通過對黃土丘陵區燕溝流域2005~2007年雨季的多次降水、0~400cm土層土壤水、溝道地錶水、地下水(泉水、井水)水樣中D和~(18)O採樣分析, 研究瞭該區降水、土壤水、地錶水、地下水的轉化關繫.結果認為:燕溝流域的降水線與中國、世界的降水線有明顯區彆,斜率和截距偏小;降水、地錶水、土壤水、地下水逐漸富集δD和δ~(18)O,且δ~(18)O富集速度高于δD, 由D和~(18)O的蒸髮分餾差異所緻,可利用各類水體的δD和δ~(18)O變化情況甄彆水體之間的水量轉化;土壤水δD和δ~(18)O剖麵在200cm深度處齣現低值區,應是降水補給到達該深度且土壤蒸髮影響逐漸衰減共同作用的結果, 其在200cm以下逐漸升高則因為降水補給影響逐漸降低、土壤水本底同位素影響增彊所緻.由于380 ~400cm深層土壤水的δD和δ~(18)O對降水事件的響應存在,因此認為降水-地下水的轉化存在,降水補給泉水的滯後期小于35d.而對井水的補給滯後時間以及土壤水對地下水的補給量還需進一步研究.
통과대황토구릉구연구류역2005~2007년우계적다차강수、0~400cm토층토양수、구도지표수、지하수(천수、정수)수양중D화~(18)O채양분석, 연구료해구강수、토양수、지표수、지하수적전화관계.결과인위:연구류역적강수선여중국、세계적강수선유명현구별,사솔화절거편소;강수、지표수、토양수、지하수축점부집δD화δ~(18)O,차δ~(18)O부집속도고우δD, 유D화~(18)O적증발분류차이소치,가이용각류수체적δD화δ~(18)O변화정황견별수체지간적수량전화;토양수δD화δ~(18)O부면재200cm심도처출현저치구,응시강수보급도체해심도차토양증발영향축점쇠감공동작용적결과, 기재200cm이하축점승고칙인위강수보급영향축점강저、토양수본저동위소영향증강소치.유우380 ~400cm심층토양수적δD화δ~(18)O대강수사건적향응존재,인차인위강수-지하수적전화존재,강수보급천수적체후기소우35d.이대정수적보급체후시간이급토양수대지하수적보급량환수진일보연구.
During the rainfall events in the rainy seasons of 2005-2007, a total of 87 water samples from rainfall events, soil water at 0-400cm layers, surface water in valleys, and ground water (spring water, well water) were collected, the D (deuterium) & ~(18)O (oxygen-18) in these samples were analyzed to interpret the relationship among those water sources in Yangou watershed in the loess hilly region, and the locally meteoric water line (LMWL) was obtained. The result shows that the LMWL of Yangou is similar to that of Xi'an region but different significantly from the LMWL of China and the global meteoric water line (GMWL), both slope and intercept of the LMWL of Yangou are smaller than that of China LMWL and GMWL, the δD & δ~(18)O content in different water sources are gradually richer in the order of rainwater, ditch water, soil water and groundwater due to isotopic fractionation, and the enrichment of δ~(18)O is faster than that of δD. The variation of δ~(18)O and δD values can be used to identify different water sources and to determine the transformation relationships among them. We have found that the minimum values of δ~(18)O and δD appear to be at the 180-200 cm depth, indicating that the precipitation can infiltrate into the subsurface soil at that depth and the influence of deep soil water on the surface evaporation vanishes at that depth too. The δD & δ~(18)O values increase gradually below 200 cm depth, which suggests that the influence of precipitation infiltration is weakening and the groundwater component in soil water is increasing. In responding to rainfall the events, the δD & δ~(18)O values are found to be fluctuated in deep soil at the 380-400 cm depth. This result indicates that the rainfall is able to recharge groundwater through either capillary micro-flow or/and priority macro-flow. The experimental data also show that the time lags between the rainfall events and recharging from the springs are less than 35 days. Further studies are warranted to investigate the time lags between rainfall events and recharging from wells, as well as the recharging amount of groundwater from soil water.