电子测量与仪器学报
電子測量與儀器學報
전자측량여의기학보
JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT
2010年
1期
96-100
,共5页
核映射%局部边界%Fisher判别%故障诊断
覈映射%跼部邊界%Fisher判彆%故障診斷
핵영사%국부변계%Fisher판별%고장진단
kernel mapping%local margin%fisher discriminant%fault diagnosis
提出一种基于核的局部边界Fisher判别(KLMFD)算法用核函数将故障特征数据映射到高维核空间,以每点与所有局部邻域点中最远同类数据点和最近异类数据点构成的点对来计算类内散度和类间散度,构建边界局部核Fisher判别函数,求出最优故障识别向量,然后利用该向量对测试特征数据进行故障诊断.转子故障诊断实验表明,对于多传感器振动特征融合信号,KMLFD算法的故障诊断效果最好,当选取合适参数时能完全识别故障类型.
提齣一種基于覈的跼部邊界Fisher判彆(KLMFD)算法用覈函數將故障特徵數據映射到高維覈空間,以每點與所有跼部鄰域點中最遠同類數據點和最近異類數據點構成的點對來計算類內散度和類間散度,構建邊界跼部覈Fisher判彆函數,求齣最優故障識彆嚮量,然後利用該嚮量對測試特徵數據進行故障診斷.轉子故障診斷實驗錶明,對于多傳感器振動特徵融閤信號,KMLFD算法的故障診斷效果最好,噹選取閤適參數時能完全識彆故障類型.
제출일충기우핵적국부변계Fisher판별(KLMFD)산법용핵함수장고장특정수거영사도고유핵공간,이매점여소유국부린역점중최원동류수거점화최근이류수거점구성적점대래계산류내산도화류간산도,구건변계국부핵Fisher판별함수,구출최우고장식별향량,연후이용해향량대측시특정수거진행고장진단.전자고장진단실험표명,대우다전감기진동특정융합신호,KMLFD산법적고장진단효과최호,당선취합괄삼수시능완전식별고장류형.
In order to better identify the fault of rotor system, one new method based on kernel local-margin fisher discriminant (KLMFD) is proposed.In this methd, fualt feature data are mapped to high-dimensional space by kernel function, computed with-class scatter and between-class scatte based on the farthest congeneric data point and the re-cent heterogeneous data point of each point in all the local neighborhood, constructed kernel local magin fisher dis-criminant function, found optimal fault diagnosis vector. Then fault of new testing data are identified by this vector.The experiment showed, KLMFD algorithm had best effect in comparison to other manifold learning algorithm to the rotor fault diagnosis, and can fully identify fault type when selecting the appropriate parameters.