光电子·激光
光電子·激光
광전자·격광
JOURNAL OF OPTOECTRONICS·LASER
2005年
1期
120-123
,共4页
非线性光学%Ginzburg-Landau方程%孤波解
非線性光學%Ginzburg-Landau方程%孤波解
비선성광학%Ginzburg-Landau방정%고파해
nonlinear optics%Ginzburg-Landau equation%solitary wave solution
高阶-复Ginzburg-Landau方程(HCGLE)作为描述光脉冲在光纤中传输的非线性偏微分方程之一很长时间以来都是非线性光学专业研究的主要课题,利用三角函数展开法对该方程做了精确求解,得出满足不同参数条件下的一系列孤波解,在光通信领域有很大的潜在研究和应用价值.
高階-複Ginzburg-Landau方程(HCGLE)作為描述光脈遲在光纖中傳輸的非線性偏微分方程之一很長時間以來都是非線性光學專業研究的主要課題,利用三角函數展開法對該方程做瞭精確求解,得齣滿足不同參數條件下的一繫列孤波解,在光通信領域有很大的潛在研究和應用價值.
고계-복Ginzburg-Landau방정(HCGLE)작위묘술광맥충재광섬중전수적비선성편미분방정지일흔장시간이래도시비선성광학전업연구적주요과제,이용삼각함수전개법대해방정주료정학구해,득출만족불동삼수조건하적일계렬고파해,재광통신영역유흔대적잠재연구화응용개치.
Higher order complex Ginzburg-Landau equation(HCGLE) is a major subject in nonlinear optics as one of the nonlinear partial differential equation which describes the propagation of optical pulses in optic fibers. In this paper the authors solve this equation by using the trigonometric function transform method and obtain a series of exact solitary wave solutions with different parameters which may have potential application in optical communication. Due to the restrictions imposed by our work, these solutions do not cover the whole range of parameters but they can server as a basis for further generalization and allows to find some classes of solutions in analytical form.