纯粹数学与应用数学
純粹數學與應用數學
순수수학여응용수학
PURE AND APPLIED MATHEMATICS
2012年
1期
137-142
,共6页
泛函微分方程%不动点定理%正周期解%存在性
汎函微分方程%不動點定理%正週期解%存在性
범함미분방정%불동점정리%정주기해%존재성
functional differential equations%fixed-point theorem%positive periodic solutions%existence
运用Krasnosel’skii不动点理论研究了一类含参泛函微分方程半正问题正周期解的存在性.获得了当参数充分小时正周期解的存在性结果以及半正问题正周期解存在的充分条件.丰富了一阶泛函微分方程解的存在性理论.
運用Krasnosel’skii不動點理論研究瞭一類含參汎函微分方程半正問題正週期解的存在性.穫得瞭噹參數充分小時正週期解的存在性結果以及半正問題正週期解存在的充分條件.豐富瞭一階汎函微分方程解的存在性理論.
운용Krasnosel’skii불동점이론연구료일류함삼범함미분방정반정문제정주기해적존재성.획득료당삼수충분소시정주기해적존재성결과이급반정문제정주기해존재적충분조건.봉부료일계범함미분방정해적존재성이론.
By using Krasnosel'skii fixed-point theorem in cones, this paper studies the existence of positive periodic solutions for semipositone problems of functional differential equations. We obtain the existence of positive periodic solutions when the parameter is small enough, and the sufficient conditions for existence of positive periodic solutions for semipositone problems, enriching the theory for existence of solutions of functional differential equations.