物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2010年
12期
3193-3198
,共6页
高海丽%廖世军%曾建皇%梁振兴%谢义淳
高海麗%廖世軍%曾建皇%樑振興%謝義淳
고해려%료세군%증건황%량진흥%사의순
直接甲醇燃料电池%Pt修饰Ru/C%电催化剂%甲醇氧化%抗中毒能力
直接甲醇燃料電池%Pt脩飾Ru/C%電催化劑%甲醇氧化%抗中毒能力
직접갑순연료전지%Pt수식Ru/C%전최화제%갑순양화%항중독능력
Direct methanol fuel cell%Platinum-decorated Ru/C%Electrocatalyst%Methanol oxidation%Poison tolerance
采用两步浸渍-还原法制备了一种具有高Pt利用效率,高性能的Pt修饰的Ru/C催化剂(Ru@Pt/C).对于甲醇的阳极氧化反应,该催化剂的单位质最铂的催化活性分别为Pt/C、自制PtRu/C和商业JM PtRu/C催化剂的1.9、1.5和1.4倍;其电化学活性比表面积分别为Pt/C和自制PtRu/C的1.6和1.3倍.尤为重要的是该催化剂对甲醇氧化中间体具有很好的去除能力,其正向扫描的氧化峰的峰电流密度(If)与反向扫描氧化峰的峰电流密度(Ib)之比可高达2.4,为Pt/C催化剂的If//Ib的2.7倍,表明催化剂具有很好的抗甲醇氧化中间体毒化的能力.另外,Ru@Pt/C催化剂的稳定性也高于Pt/C、自制PtRu/C和商业JM PtRu/C催化剂的稳定性.采用X射线衍射(XRD)、透射电镜(TEM)和X射线光电子能谱(XPS)对催化剂进行了表征,Pt在Ru表面的包覆结构得到了印证.Ru@Pt/C的高铂利用效率、高性能和高抗毒能力使其有望成为一种理想的直接甲醇燃料电池电催化剂.
採用兩步浸漬-還原法製備瞭一種具有高Pt利用效率,高性能的Pt脩飾的Ru/C催化劑(Ru@Pt/C).對于甲醇的暘極氧化反應,該催化劑的單位質最鉑的催化活性分彆為Pt/C、自製PtRu/C和商業JM PtRu/C催化劑的1.9、1.5和1.4倍;其電化學活性比錶麵積分彆為Pt/C和自製PtRu/C的1.6和1.3倍.尤為重要的是該催化劑對甲醇氧化中間體具有很好的去除能力,其正嚮掃描的氧化峰的峰電流密度(If)與反嚮掃描氧化峰的峰電流密度(Ib)之比可高達2.4,為Pt/C催化劑的If//Ib的2.7倍,錶明催化劑具有很好的抗甲醇氧化中間體毒化的能力.另外,Ru@Pt/C催化劑的穩定性也高于Pt/C、自製PtRu/C和商業JM PtRu/C催化劑的穩定性.採用X射線衍射(XRD)、透射電鏡(TEM)和X射線光電子能譜(XPS)對催化劑進行瞭錶徵,Pt在Ru錶麵的包覆結構得到瞭印證.Ru@Pt/C的高鉑利用效率、高性能和高抗毒能力使其有望成為一種理想的直接甲醇燃料電池電催化劑.
채용량보침지-환원법제비료일충구유고Pt이용효솔,고성능적Pt수식적Ru/C최화제(Ru@Pt/C).대우갑순적양겁양화반응,해최화제적단위질최박적최화활성분별위Pt/C、자제PtRu/C화상업JM PtRu/C최화제적1.9、1.5화1.4배;기전화학활성비표면적분별위Pt/C화자제PtRu/C적1.6화1.3배.우위중요적시해최화제대갑순양화중간체구유흔호적거제능력,기정향소묘적양화봉적봉전류밀도(If)여반향소묘양화봉적봉전류밀도(Ib)지비가고체2.4,위Pt/C최화제적If//Ib적2.7배,표명최화제구유흔호적항갑순양화중간체독화적능력.령외,Ru@Pt/C최화제적은정성야고우Pt/C、자제PtRu/C화상업JM PtRu/C최화제적은정성.채용X사선연사(XRD)、투사전경(TEM)화X사선광전자능보(XPS)대최화제진행료표정,Pt재Ru표면적포복결구득도료인증.Ru@Pt/C적고박이용효솔、고성능화고항독능력사기유망성위일충이상적직접갑순연료전지전최화제.
A platinum-decorated Ru/C catalyst with high platinum utilization efficiency, high performance, and high poisoning tolerance was prepared using a two-stage impregnation reduction method. We found that for anodic methanol oxidation the catalyst activity in terms of the Ft load was 1.9 and 1.5 times as that of Pt/C and PtRu/C alloy catalysts, respectively. These values are also higher than that of the commercial JM PtRu/C catalyst. The electrochemically active surface area of Ru@Pt/C was found to be 1.6 and 1.3 times as those of Pt/C and PtRu/C alloy catalysts, respectively. Furthermore, we found that the ratio of the forward peak current density (It) to the backward peak current density (Ib) reached 2.4, which was 2.7 times as that of the Pt/C catalyst. This implies that the Pt-decorated Ru/C catalyst possesses a high tolerance for the intermediate poisoning species. In addition, the stability of Ru@Pt/C was higher than that of Pt/C, PtRu/ C alloy and JM PtRu/C. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The core-shell structure of the catalyst was determined by XRD and TEM. The high performance and high poisoning tolerance of Ru@Pt/C during the anodic oxidation of methanol make it a promising electrocatalyst for direct methanol fuel cells.