数学的实践与认识
數學的實踐與認識
수학적실천여인식
MATHEMATICS IN PRACTICE AND THEORY
2009年
22期
190-192
,共3页
脉冲%中立型差分方程%连续变量%振动
脈遲%中立型差分方程%連續變量%振動
맥충%중립형차분방정%련속변량%진동
impulsive%neutral difference equation%continuous argument%oscillation
研究具连续变量脉冲中立型时滞差分方程{△[y(t)-p(t-τ)]+q(t)y(t-σ)=0,t≠t_ky(t_k~+)-y(t_k)=b_ky(t_k),k=1,2…利用辅助方程,建立等价定理,得到了方程解振动的显式充分性条件.
研究具連續變量脈遲中立型時滯差分方程{△[y(t)-p(t-τ)]+q(t)y(t-σ)=0,t≠t_ky(t_k~+)-y(t_k)=b_ky(t_k),k=1,2…利用輔助方程,建立等價定理,得到瞭方程解振動的顯式充分性條件.
연구구련속변량맥충중립형시체차분방정{△[y(t)-p(t-τ)]+q(t)y(t-σ)=0,t≠t_ky(t_k~+)-y(t_k)=b_ky(t_k),k=1,2…이용보조방정,건립등개정리,득도료방정해진동적현식충분성조건.
Consider the impulsive neutral difference equation with continuous arguments {△[y(t)-p(t-τ)]+q(t)y(t-σ)=0,t≠t_ky(t_k~+)-y(t_k)=b_ky(t_k),k=1,2… and obtain sufficient conditions for oscillation of all solutions of the equation.