燃料化学学报
燃料化學學報
연료화학학보
JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY
2010年
2期
201-206
,共6页
等离子体%部分氧化重整%富氢气体%H_2产率%车载%DME
等離子體%部分氧化重整%富氫氣體%H_2產率%車載%DME
등리자체%부분양화중정%부경기체%H_2산솔%차재%DME
plasma%hydrogen-rich gas%partial oxidation reforming%H_2 yield%on board%DME
应用自制的车载等离子体富氢气体制备装置,进行了二甲醚(DME)部分氧化重整制氢实验,研究了操作参数、结构参数、电极材料和电极散热特性对产物中气体组成和氢产率的影响.结果表明,常温常压下,H_2的体积分数和氢产率随占空比和放电频率的增大先增大后减小,当占空比为80%和频率为170Hz时分别达到最大;随电极直径的增大和发生腔数量的增加而增大,随正极散热能力的提高而降低;当空醚比从0.5增大到4.0时,H_2的体积分数随空醚比的增大而逐渐减小,氢产率则先增大后减小,空醚比为3.5时氢产率最大;选用铱合金正极、铜质负极以及合适的发生腔半径对产氢有利.
應用自製的車載等離子體富氫氣體製備裝置,進行瞭二甲醚(DME)部分氧化重整製氫實驗,研究瞭操作參數、結構參數、電極材料和電極散熱特性對產物中氣體組成和氫產率的影響.結果錶明,常溫常壓下,H_2的體積分數和氫產率隨佔空比和放電頻率的增大先增大後減小,噹佔空比為80%和頻率為170Hz時分彆達到最大;隨電極直徑的增大和髮生腔數量的增加而增大,隨正極散熱能力的提高而降低;噹空醚比從0.5增大到4.0時,H_2的體積分數隨空醚比的增大而逐漸減小,氫產率則先增大後減小,空醚比為3.5時氫產率最大;選用銥閤金正極、銅質負極以及閤適的髮生腔半徑對產氫有利.
응용자제적차재등리자체부경기체제비장치,진행료이갑미(DME)부분양화중정제경실험,연구료조작삼수、결구삼수、전겁재료화전겁산열특성대산물중기체조성화경산솔적영향.결과표명,상온상압하,H_2적체적분수화경산솔수점공비화방전빈솔적증대선증대후감소,당점공비위80%화빈솔위170Hz시분별체도최대;수전겁직경적증대화발생강수량적증가이증대,수정겁산열능력적제고이강저;당공미비종0.5증대도4.0시,H_2적체적분수수공미비적증대이축점감소,경산솔칙선증대후감소,공미비위3.5시경산솔최대;선용의합금정겁、동질부겁이급합괄적발생강반경대산경유리.
The production of hydrogen-rich gas by plasma reforming of DME was conducted in a self-made three-cavity reformer at atmospheric pressure and ambient temperature. The effects of reformer structure parameters, electrode material, heat transfer characteristic, and operation parameters on the gas composition and hydrogen yield were investigated. The results indicated that with the increase of pulse duty ratio and arc frequency, the yield of hydrogen increases first and reaches a maximum when the pulse duty ratio and arc frequency are 80% and 170Hz, respectively. The yield of hydrogen increases with the increase of anode diameter and discharge cavity number, but decreases with the increase of anodic heat transfer characteristic. The optimal air/DME ratio is 3.5 to get the highest hydrogen yield. Hydrogen yield and hydrogen concentration in the product can be enhanced by using iridium anodes, cuprum cathodes and reasonable radius of cavities.