兰州大学学报(自然科学版)
蘭州大學學報(自然科學版)
란주대학학보(자연과학판)
JOURNAL OF LANZHOU UNIVERSITY(NATURAL SCIENCES)
2012年
1期
92-96
,共5页
时滞%无病周期解%全局稳定性
時滯%無病週期解%全跼穩定性
시체%무병주기해%전국은정성
time delay%disease-free periodic solution%global attractivity
考虑了具有饱和接触率和变化种群大小的脉冲时滞的SVEIR模型,利用离散动力系统的频闪映射,得到了无病周期解的存在性和它的精确表达式.根据比较原理,得到无病周期解全局渐近稳定的充分条件.最后,通过数值模拟解释了获得的结果.
攷慮瞭具有飽和接觸率和變化種群大小的脈遲時滯的SVEIR模型,利用離散動力繫統的頻閃映射,得到瞭無病週期解的存在性和它的精確錶達式.根據比較原理,得到無病週期解全跼漸近穩定的充分條件.最後,通過數值模擬解釋瞭穫得的結果.
고필료구유포화접촉솔화변화충군대소적맥충시체적SVEIR모형,이용리산동력계통적빈섬영사,득도료무병주기해적존재성화타적정학표체식.근거비교원리,득도무병주기해전국점근은정적충분조건.최후,통과수치모의해석료획득적결과.
A pulse vaccination delayed SVEIR model with saturation incidence and a varying total population was proposed.Using the discrete dynamical system determined by the stroboscopic map,the existence of the disease-free periodic solution and its exact expression were obtained.Further,using the comparison theorem,the sufficient conditions for the global attractivity of the disease-free periodic solution were established.Finally,numerical simulations were carried out to explain the results obtained.