计算机工程与设计
計算機工程與設計
계산궤공정여설계
COMPUTER ENGINEERING AND DESIGN
2009年
14期
3288-3290,3382
,共4页
令狐红英%陈梅%王翰虎%娄皴
令狐紅英%陳梅%王翰虎%婁皴
령호홍영%진매%왕한호%루준
特征选择%互信息%可信度%贝叶斯分类%入侵检测
特徵選擇%互信息%可信度%貝葉斯分類%入侵檢測
특정선택%호신식%가신도%패협사분류%입침검측
feature selection%mutual information%credibility%Bayesian classifier%intrusion detection
传统贝叶斯入侵检测算法没有考虑不同属性和属性权值对入侵检测结果的影响,因此分类准确率不够高.针对传统贝叶斯入侵检测算法存在的不足,提出基于互信息可信度的贝叶斯网络入侵检测算法.在综合考虑网络入侵检测数据特点和传统贝叶斯分类算法优点的基础上,用互信息相对可信度进行特征选择,删除一些冗余属性,把互信息相对可信度作为权值引进贝叶斯分类算法中,得到优化的贝叶斯网络入侵检测算法(MI-NB).实验结果表明,MI-NB算法能大大降低分类数据的维数,比传统贝叶斯入侵检测算法及改进算法有更高的分类准确率.
傳統貝葉斯入侵檢測算法沒有攷慮不同屬性和屬性權值對入侵檢測結果的影響,因此分類準確率不夠高.針對傳統貝葉斯入侵檢測算法存在的不足,提齣基于互信息可信度的貝葉斯網絡入侵檢測算法.在綜閤攷慮網絡入侵檢測數據特點和傳統貝葉斯分類算法優點的基礎上,用互信息相對可信度進行特徵選擇,刪除一些冗餘屬性,把互信息相對可信度作為權值引進貝葉斯分類算法中,得到優化的貝葉斯網絡入侵檢測算法(MI-NB).實驗結果錶明,MI-NB算法能大大降低分類數據的維數,比傳統貝葉斯入侵檢測算法及改進算法有更高的分類準確率.
전통패협사입침검측산법몰유고필불동속성화속성권치대입침검측결과적영향,인차분류준학솔불구고.침대전통패협사입침검측산법존재적불족,제출기우호신식가신도적패협사망락입침검측산법.재종합고필망락입침검측수거특점화전통패협사분류산법우점적기출상,용호신식상대가신도진행특정선택,산제일사용여속성,파호신식상대가신도작위권치인진패협사분류산법중,득도우화적패협사망락입침검측산법(MI-NB).실험결과표명,MI-NB산법능대대강저분류수거적유수,비전통패협사입침검측산법급개진산법유경고적분류준학솔.
Traditional Bayesian intrusion detection algorithm does not consider the influence caused by different properties and weights of the properties, so the classification accuracy rate is not high enough. Aiming at the shortage of traditional Bayesian intrusion detection algorithm, a Bayesian network intrusion detection method based on credibility of mutual information is proposed. After considering the characteristics of network intrusion detection data and the merits of traditional Bayesian classification, credibility of mutual information is used to select feature, and some redundant properties are deleted. The credibility as weights is introduced Bayesian classifier in order to get optimized Bayesian network intrusion detection algorithm (MI-NB). Experiments show that MI-NB algorithm can greatly reduce the dimension of classification data and has higher classification accuracy rate than the traditional intrusion detection algorithm and the improved algorithm.