计算机工程与应用
計算機工程與應用
계산궤공정여응용
COMPUTER ENGINEERING AND APPLICATIONS
2009年
21期
55-57,60
,共4页
双摄像机标定%自适应%多层前馈网络%Harris角点
雙攝像機標定%自適應%多層前饋網絡%Harris角點
쌍섭상궤표정%자괄응%다층전궤망락%Harris각점
binocular camera calibration%self-adaptive%Back Propagation(BP) network%harris comer
摄像机标定是计算机视觉中非常重要的一环,传统标定方法需要求解内外参数,非常繁琐.通过建立自适应神经网络直接学习图像坐标与空间坐标间的关系.该方法对Harris角点提取结果进行增加约束的改进,从而提高网络训练样本精度,通过程序实现隐层神经元的自适应选取,并综合运用正则化、提前终止策略,使网络的泛化能力得到极大的改善.最后通过与经典标定方法进行对比的实验证明基于自适应神经网络具有很好的双摄像机标定精度.
攝像機標定是計算機視覺中非常重要的一環,傳統標定方法需要求解內外參數,非常繁瑣.通過建立自適應神經網絡直接學習圖像坐標與空間坐標間的關繫.該方法對Harris角點提取結果進行增加約束的改進,從而提高網絡訓練樣本精度,通過程序實現隱層神經元的自適應選取,併綜閤運用正則化、提前終止策略,使網絡的汎化能力得到極大的改善.最後通過與經典標定方法進行對比的實驗證明基于自適應神經網絡具有很好的雙攝像機標定精度.
섭상궤표정시계산궤시각중비상중요적일배,전통표정방법수요구해내외삼수,비상번쇄.통과건립자괄응신경망락직접학습도상좌표여공간좌표간적관계.해방법대Harris각점제취결과진행증가약속적개진,종이제고망락훈련양본정도,통과정서실현은층신경원적자괄응선취,병종합운용정칙화、제전종지책략,사망락적범화능력득도겁대적개선.최후통과여경전표정방법진행대비적실험증명기우자괄응신경망락구유흔호적쌍섭상궤표정정도.
Camera calibration is an important step in computer vision,the traditional calibration methods need to acquire the in-trinsic and extrinsic parameters and the process is quite complicated,so self-adaptive neural network is used to learn the rela-tionship between the image coordinates and the space coordinates.The generalization ability is improved a lot by the following methods:modify Harris comer extraction algorithm to improve the training data accuracy,choose the number of the middle layer cells adaptively through program,and combine normalization and stopped training strategies.At last,comparing with the traditional calibration method,the test result shows that this method is available and has higher precision for binocular camera calibration.