喀什师范学院学报
喀什師範學院學報
객십사범학원학보
JOURNAL OF KASHGAR TEACHERS COLLEGE
2011年
6期
8-10
,共3页
逆极限%正规性%收缩性%次收缩性
逆極限%正規性%收縮性%次收縮性
역겁한%정규성%수축성%차수축성
Inverse Limit%Normal%Shrinking%Subshrinking
在假设逆极限空间X=lim←{Xα,παβ,Λ}是λ-仿紧、投射πα为伪开映射的条件下,正规性、收缩性及次收缩性均可为其极限空间保持.为此,对逆极限保持定理的证明作了适当简化,为其他拓扑性质逆极限的简化证明提供了参考.
在假設逆極限空間X=lim←{Xα,παβ,Λ}是λ-倣緊、投射πα為偽開映射的條件下,正規性、收縮性及次收縮性均可為其極限空間保持.為此,對逆極限保持定理的證明作瞭適噹簡化,為其他拓撲性質逆極限的簡化證明提供瞭參攷.
재가설역겁한공간X=lim←{Xα,παβ,Λ}시λ-방긴、투사πα위위개영사적조건하,정규성、수축성급차수축성균가위기겁한공간보지.위차,대역겁한보지정리적증명작료괄당간화,위기타탁복성질역겁한적간화증명제공료삼고.
Let X=lim←{Xα,παβ,Λ}, be an inverse system of spaces Xα,|Λ|=λ,suppose X is λ-Paracompact,πα is a pseudo-open map.If each Xα satisfy any one of the following properties,then X has also the corresponding property: normal,shrinking,subshrinking.This paper points out that the proof of these properties can be simplified,and provides the reference for other properties of inverse limits.