催化学报
催化學報
최화학보
CHINESE JOURNAL OF CATALYSIS
2011年
3期
446-450
,共5页
李巧灵%张元华%陈世萍%方维平%杨意泉
李巧靈%張元華%陳世萍%方維平%楊意泉
리교령%장원화%진세평%방유평%양의천
转化率方程%反应动力学%加氢%脱氢%加氢脱硫%阿伦尼乌斯法则
轉化率方程%反應動力學%加氫%脫氫%加氫脫硫%阿倫尼烏斯法則
전화솔방정%반응동역학%가경%탈경%가경탈류%아륜니오사법칙
conversion equation%reaction kinetics%hydrogenation%dehydrogenation%hydrodesulfurization%Arrhenius law
根据幂指函数g(u))=ua+bu的特点,借用"虚拟反应组分"和"变动级数"的概念,提出了管式反应器系统中反应转化率与工艺条件的关系式XM=1-exp[-exp(A+B/Tr+CTr)Prnp0+np1Prτnrr0+nr1τrm∏i=1yniy0+ny1y1].为了验证该转化率方程的普适性,考察了二乙苯催化脱氢、乙苯加氢和噻吩加氢脱硫等,并利用Matlab软件分别对这三个催化体系的实验数据进行拟合.结果表明,此方程在较宽的范围内均能很好地反映温度、反应压力、空速和物料比对转化率的影响.预测结果与实验数据之间的总平均相对偏差均小于2%,说明该方程并不是针对某一特定的催化反应或催化剂,可用于大多数的管式反应器催化反应系统中.
根據冪指函數g(u))=ua+bu的特點,藉用"虛擬反應組分"和"變動級數"的概唸,提齣瞭管式反應器繫統中反應轉化率與工藝條件的關繫式XM=1-exp[-exp(A+B/Tr+CTr)Prnp0+np1Prτnrr0+nr1τrm∏i=1yniy0+ny1y1].為瞭驗證該轉化率方程的普適性,攷察瞭二乙苯催化脫氫、乙苯加氫和噻吩加氫脫硫等,併利用Matlab軟件分彆對這三箇催化體繫的實驗數據進行擬閤.結果錶明,此方程在較寬的範圍內均能很好地反映溫度、反應壓力、空速和物料比對轉化率的影響.預測結果與實驗數據之間的總平均相對偏差均小于2%,說明該方程併不是針對某一特定的催化反應或催化劑,可用于大多數的管式反應器催化反應繫統中.
근거멱지함수g(u))=ua+bu적특점,차용"허의반응조분"화"변동급수"적개념,제출료관식반응기계통중반응전화솔여공예조건적관계식XM=1-exp[-exp(A+B/Tr+CTr)Prnp0+np1Prτnrr0+nr1τrm∏i=1yniy0+ny1y1].위료험증해전화솔방정적보괄성,고찰료이을분최화탈경、을분가경화새분가경탈류등,병이용Matlab연건분별대저삼개최화체계적실험수거진행의합.결과표명,차방정재교관적범위내균능흔호지반영온도、반응압력、공속화물료비대전화솔적영향.예측결과여실험수거지간적총평균상대편차균소우2%,설명해방정병불시침대모일특정적최화반응혹최화제,가용우대다수적관식반응기최화반응계통중.
A comprehensive conversion equation was developed to simulate the catalytic reaction conditions (include temperature, pressure,residence time, and reaction composition) in tubular reactors: XM = 1-exp[-exp(A+B/Tr +CTr)pnrp0+np1prτrnτ0+nτ1τrm∏i=1yiny0+ny1y1].This conversion equation is based on the characteristics of the power-exponential function g(u) = ua+bu as well as the "variable reaction order" and "virtual reactant" concepts. Its validity was verified by fitting experiment data from three different catalytic systems such as the dehydrogenation of diethyl benzene, the hydrogenation of ethylbenzene, and the hydrodesulfurization of thiophene. The results show that the influences of reaction temperature, pressure, residence time, and reactant composition on the conversion of the reactant can be determined within a wide range of values. By comparison with the experimental data, the calculated conversions were all found to have a total average relative deviation of less than 2%. This suggests that the conversion equation is not limited to a specific catalyst system but could be suitable for various catalyst systems in tubular reactors.