计算机应用
計算機應用
계산궤응용
COMPUTER APPLICATION
2010年
3期
789-792
,共4页
水下机器人%粒子群算法%路径规划%海流%适应度函数
水下機器人%粒子群算法%路徑規劃%海流%適應度函數
수하궤기인%입자군산법%로경규화%해류%괄응도함수
underwater vehicle%Particle Swarm Optimization (PSO) algorithm%path planning%ocean current%fitness function
在海洋环境中水下机器人路径规划具有规划范围广阔、障碍物相对稀疏、海流的影响不可避免的特点.应用粒子群优化(PSO)算法实现水下机器人在复杂海洋环境中的路径规划,并从参数控制策略及拓扑模型方面进行改进,得到收敛精度更好的改进粒子群优化算法.设计了综合路径长度、海流和转向费用的适应度函数,使算法很好地适应海流的变化,很大程度减小了海流对水下机器人能量消耗和控制的不利影响.经仿真实验验证了算法的有效性,并能够很好地满足在复杂海况环境水下机器人路径规划的要求.
在海洋環境中水下機器人路徑規劃具有規劃範圍廣闊、障礙物相對稀疏、海流的影響不可避免的特點.應用粒子群優化(PSO)算法實現水下機器人在複雜海洋環境中的路徑規劃,併從參數控製策略及拓撲模型方麵進行改進,得到收斂精度更好的改進粒子群優化算法.設計瞭綜閤路徑長度、海流和轉嚮費用的適應度函數,使算法很好地適應海流的變化,很大程度減小瞭海流對水下機器人能量消耗和控製的不利影響.經倣真實驗驗證瞭算法的有效性,併能夠很好地滿足在複雜海況環境水下機器人路徑規劃的要求.
재해양배경중수하궤기인로경규화구유규화범위엄활、장애물상대희소、해류적영향불가피면적특점.응용입자군우화(PSO)산법실현수하궤기인재복잡해양배경중적로경규화,병종삼수공제책략급탁복모형방면진행개진,득도수렴정도경호적개진입자군우화산법.설계료종합로경장도、해류화전향비용적괄응도함수,사산법흔호지괄응해류적변화,흔대정도감소료해류대수하궤기인능량소모화공제적불리영향.경방진실험험증료산법적유효성,병능구흔호지만족재복잡해황배경수하궤기인로경규화적요구.
The characteristics of the underwater vehicle's path planning in the ocean environment are as follows: broad planning range, relatively sparse obstacles, and inevitable impact of the ocean currents. The Particle Swarm Optimization (PSO) algorithm was adopted to realize the path planning of the underwater vehicle in the complex ocean environment. According to the parameters control strategies and topology models, an improved PSO algorithm with better constringency precision was obtained. During the programming, a fitness function was designed, which combined path length, ocean currents and shift cost of the underwater vehicle. By using this function, the adverse effects on the underwater vehicle's energy consumption and control performance caused by the ocean currents can be greatly reduced. The simulation results verify the effectiveness of this algorithm. Besides, the proposed algorithm can well meet the requirements of the path planning for the underwater vehicle in complex environment.