国际生物医学工程杂志
國際生物醫學工程雜誌
국제생물의학공정잡지
INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING
2012年
3期
137-141
,共5页
崔红岩%谢小波%徐圣普%沈冲飞%胡勇
崔紅巖%謝小波%徐聖普%瀋遲飛%鬍勇
최홍암%사소파%서골보%침충비%호용
体感诱发电位%径向基函数%自适应信号增强%自适应信号消噪%复合自适应滤波器%最小均方误差算法
體感誘髮電位%徑嚮基函數%自適應信號增彊%自適應信號消譟%複閤自適應濾波器%最小均方誤差算法
체감유발전위%경향기함수%자괄응신호증강%자괄응신호소조%복합자괄응려파기%최소균방오차산법
Somsatosensory evoked potential%Aadial basis function%Adaptive signal enhance%Adaptive noise canceller%Multi-adaptive filter,Least mean square error algorithm
目的 针对体感诱发电位(SEP)的特征,设计基于径向基函数网络的复合自适应滤波器,实现体感诱发电位的快速提取.方法通过径向基函数网络的关键参数优化选择,对基于径向基函数网络的复合自适应滤波器与以自适应信号增强器和自适应噪声消除器为基础构造的复合自适应滤波器提取体感诱发电位的性能进行比较分析.结果仿真实验表明:基于径向基函数神经网络的复合自适应滤波器拟合出的SEP信号,在波形上基本与模板信号相似,并且比已有复合自适应滤波器拟合出的波形更为平滑.结论 基于径向基函数网络的复合自适应滤波器新算法可实现从强噪声背景中快速提取体感诱发电位,能更快地识别体感诱发电位的潜伏期及幅值,实现单次提取,并且系统性能稳定.
目的 針對體感誘髮電位(SEP)的特徵,設計基于徑嚮基函數網絡的複閤自適應濾波器,實現體感誘髮電位的快速提取.方法通過徑嚮基函數網絡的關鍵參數優化選擇,對基于徑嚮基函數網絡的複閤自適應濾波器與以自適應信號增彊器和自適應譟聲消除器為基礎構造的複閤自適應濾波器提取體感誘髮電位的性能進行比較分析.結果倣真實驗錶明:基于徑嚮基函數神經網絡的複閤自適應濾波器擬閤齣的SEP信號,在波形上基本與模闆信號相似,併且比已有複閤自適應濾波器擬閤齣的波形更為平滑.結論 基于徑嚮基函數網絡的複閤自適應濾波器新算法可實現從彊譟聲揹景中快速提取體感誘髮電位,能更快地識彆體感誘髮電位的潛伏期及幅值,實現單次提取,併且繫統性能穩定.
목적 침대체감유발전위(SEP)적특정,설계기우경향기함수망락적복합자괄응려파기,실현체감유발전위적쾌속제취.방법통과경향기함수망락적관건삼수우화선택,대기우경향기함수망락적복합자괄응려파기여이자괄응신호증강기화자괄응조성소제기위기출구조적복합자괄응려파기제취체감유발전위적성능진행비교분석.결과방진실험표명:기우경향기함수신경망락적복합자괄응려파기의합출적SEP신호,재파형상기본여모판신호상사,병차비이유복합자괄응려파기의합출적파형경위평활.결론 기우경향기함수망락적복합자괄응려파기신산법가실현종강조성배경중쾌속제취체감유발전위,능경쾌지식별체감유발전위적잠복기급폭치,실현단차제취,병차계통성능은정.
Objective To design multi-adaptive filter based on radial basis function (MAF-RBF) for efficiently extracting somatosensory evoked potential (SEP) in real-time SEP monitoring.Methods With the optimization of important parameters that influence the performance of radial basis function neural network,the performance of extracting SEP was compared to that of a multi-adaptive filter (MAF),which developed from the combination of well-developed adaptive noise canceller and adaptive signal enhancer.Results In this simulation study,the outputs of MAF-RBF showed a similar waveform with SEP template signals,and a smoother waveform than the.output of MAF.Conclusion With appropriate parameter values,MAF-RBFNN is able to extract the latency and amplitude of SEP from the extremely noisy background rapidly and reliably without averaging.