河南城建学院学报
河南城建學院學報
하남성건학원학보
JOURNAL OF PINGDINGSHAN INSTITUTE OF TECHNOLOGY
2011年
5期
42-48,52
,共8页
遗传算法(GA)独立成分分析(ICA)姿态转换矩阵
遺傳算法(GA)獨立成分分析(ICA)姿態轉換矩陣
유전산법(GA)독립성분분석(ICA)자태전환구진
Genetic algorithm(GA)%Independent Component Analysis(ICA)%Pose transformation
为了解决多姿态人脸识别问题,提出了基于独立成分分析(ICA)进行正面人脸合成的新方法。首先利用ICA提取不同姿态人脸的特征子空间,然后利用遗传算法(GA)优化不同姿态的特征子空间,最后利用通过训练得到的姿态转换矩阵得到代表待合成的正面人脸特征系数,并直接进行分类比较。通过实验,验证了新方法对人脸识别率有较大的提高,并进一步简化了识别过程。
為瞭解決多姿態人臉識彆問題,提齣瞭基于獨立成分分析(ICA)進行正麵人臉閤成的新方法。首先利用ICA提取不同姿態人臉的特徵子空間,然後利用遺傳算法(GA)優化不同姿態的特徵子空間,最後利用通過訓練得到的姿態轉換矩陣得到代錶待閤成的正麵人臉特徵繫數,併直接進行分類比較。通過實驗,驗證瞭新方法對人臉識彆率有較大的提高,併進一步簡化瞭識彆過程。
위료해결다자태인검식별문제,제출료기우독립성분분석(ICA)진행정면인검합성적신방법。수선이용ICA제취불동자태인검적특정자공간,연후이용유전산법(GA)우화불동자태적특정자공간,최후이용통과훈련득도적자태전환구진득도대표대합성적정면인검특정계수,병직접진행분류비교。통과실험,험증료신방법대인검식별솔유교대적제고,병진일보간화료식별과정。
A new frontal face synthesis method based on independent component analysis(ICA) was proposed to deal with the problem of face recognition with pose variations.First,the feature subspaces are formed from different pose images using ICA.Then the feature subspaces are optimized by genetic algorithm(GA).Finally,the pose image feature coefficient is transformed into its corresponding frontal face image feature coefficient using the transformation matrix predetermined by learning,and we compare the frontal face feature coefficients directly which are obtained by using the transformation matrix with the feature coefficients of the original face images,the recognition rate is improved greatly.