北京大学学报(自然科学版)
北京大學學報(自然科學版)
북경대학학보(자연과학판)
ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS PEKINENSIS
2003年
1期
1-5
,共5页
边传递图%半对称图%Cayley图%双Cayley图
邊傳遞圖%半對稱圖%Cayley圖%雙Cayley圖
변전체도%반대칭도%Cayley도%쌍Cayley도
edge transitive graph%semisymmetric graph%Cayley graph%bi-Cayley graph
设G是有限群,S是G的一个子集(可能含有单位元).群G关于S的双Cayley图 BCay(G,S) 是以G×{0,1}为点集而以{{(g,0),(sg,1)}|g∈G,s∈S}为边集的二部图.考查了双Cayley图 BCay(G,S)的自同构群A,并决定了NA(R+r-l(G))的结构.
設G是有限群,S是G的一箇子集(可能含有單位元).群G關于S的雙Cayley圖 BCay(G,S) 是以G×{0,1}為點集而以{{(g,0),(sg,1)}|g∈G,s∈S}為邊集的二部圖.攷查瞭雙Cayley圖 BCay(G,S)的自同構群A,併決定瞭NA(R+r-l(G))的結構.
설G시유한군,S시G적일개자집(가능함유단위원).군G관우S적쌍Cayley도 BCay(G,S) 시이G×{0,1}위점집이이{{(g,0),(sg,1)}|g∈G,s∈S}위변집적이부도.고사료쌍Cayley도 BCay(G,S)적자동구군A,병결정료NA(R+r-l(G))적결구.
For a finite group G,and a subset S(possibly,contains the identity eleme nt) of G,the bi-Cayley graph BCay(G,S) of G with respect to S i s defined as the bipartite graph with vertex set G×{0,1} and edge set {{ (g,0),(sg,1)}|g∈G,s∈S}.The automorphism group A of bi-Cayley graph BCay (G,S) is investigated,and the structure of NA(Rrl(G)) is given.