现代地质
現代地質
현대지질
GEOSCIENCE-JOURNAL OF GRADUATE SCHOOL CHINA UNIVERSITY OF GEOSCIENCES
2009年
6期
1056-1063
,共8页
李成禄%李胜荣%罗军燕%宋继叶%张聚全
李成祿%李勝榮%囉軍燕%宋繼葉%張聚全
리성록%리성영%라군연%송계협%장취전
金矿%黄铁矿%热电系数%热电导型%义兴寨%山西
金礦%黃鐵礦%熱電繫數%熱電導型%義興寨%山西
금광%황철광%열전계수%열전도형%의흥채%산서
gold deposit%pyrite%thermoelectric coefficient%thermoelectric conductive type%Yixingzhai%Shanxi
山西省繁峙县义兴寨金矿为一大型石英脉型矿床.为了获得含金石英脉空间分带性和相对埋深的信息,利用BHTE-6型热电仪,对35件矿石样品4 158粒黄铁矿进行了热电系数分析.结果表明,该矿床黄铁矿的热电导型以N型为主,N型黄铁矿出现率为75.1%,热电系数均值α(-)_N为-155.3 μV/℃.时间上从早到晚,从黄铁绢英岩化阶段到石英碳酸盐阶段,黄铁矿热电导型组合从N%﹥P%渐变为N%﹤P%;空间上从上到下,从1 190 m中段到830 m中段,N型黄铁矿热电系数均值的绝对值|α(-)_N|和N%增大,P型热电系数均值αP和P%减小,具正向分带的变化规律.通过上述参数获得矿床的形成温度为143.3~323.3 ℃,为一中低温热液矿床.热电系数在0~-200 μV/℃之间的黄铁矿是富金矿段的标志.按照经验公式计算结果,现开采中段属矿体的中下部位置,但相对埋深部位稳定.综合分析认为,该矿床830 m以下仍有良好的找矿潜力.
山西省繁峙縣義興寨金礦為一大型石英脈型礦床.為瞭穫得含金石英脈空間分帶性和相對埋深的信息,利用BHTE-6型熱電儀,對35件礦石樣品4 158粒黃鐵礦進行瞭熱電繫數分析.結果錶明,該礦床黃鐵礦的熱電導型以N型為主,N型黃鐵礦齣現率為75.1%,熱電繫數均值α(-)_N為-155.3 μV/℃.時間上從早到晚,從黃鐵絹英巖化階段到石英碳痠鹽階段,黃鐵礦熱電導型組閤從N%﹥P%漸變為N%﹤P%;空間上從上到下,從1 190 m中段到830 m中段,N型黃鐵礦熱電繫數均值的絕對值|α(-)_N|和N%增大,P型熱電繫數均值αP和P%減小,具正嚮分帶的變化規律.通過上述參數穫得礦床的形成溫度為143.3~323.3 ℃,為一中低溫熱液礦床.熱電繫數在0~-200 μV/℃之間的黃鐵礦是富金礦段的標誌.按照經驗公式計算結果,現開採中段屬礦體的中下部位置,但相對埋深部位穩定.綜閤分析認為,該礦床830 m以下仍有良好的找礦潛力.
산서성번치현의흥채금광위일대형석영맥형광상.위료획득함금석영맥공간분대성화상대매심적신식,이용BHTE-6형열전의,대35건광석양품4 158립황철광진행료열전계수분석.결과표명,해광상황철광적열전도형이N형위주,N형황철광출현솔위75.1%,열전계수균치α(-)_N위-155.3 μV/℃.시간상종조도만,종황철견영암화계단도석영탄산염계단,황철광열전도형조합종N%﹥P%점변위N%﹤P%;공간상종상도하,종1 190 m중단도830 m중단,N형황철광열전계수균치적절대치|α(-)_N|화N%증대,P형열전계수균치αP화P%감소,구정향분대적변화규률.통과상술삼수획득광상적형성온도위143.3~323.3 ℃,위일중저온열액광상.열전계수재0~-200 μV/℃지간적황철광시부금광단적표지.안조경험공식계산결과,현개채중단속광체적중하부위치,단상대매심부위은정.종합분석인위,해광상830 m이하잉유량호적조광잠력.
The gold deposit in Yixingzhai area, Fanshi County of Shanxi Province, is a large scaled quartz vein type deposit. In order to obtain more information about the zoning of the gold veins, totally 4,158 pyrite grains from 35 ore samples were analysed using a BHTE-6 type of thermoelectric instrument. The result reveals that the thermoelectric conductive type of the pyrite is mainly of N type, and the percent of the N type pyrite grains (N%) amounts to 75.1% of the total, with a mean thermoelectric coefficient of the N type pyrite (α(-)_N) being-155.3 μV/℃. The assembledge of the thermoelectric conductive types of the pyrite changes successively from N%﹥P% of the early gold-poor pyrite-sericite-silicification stage to N%﹤P% of the later silicate-carbonatification stage. Spatially, the absolute mean value of α(-)_N(|α(-)_N|) and N% increase downward from the 1,190 m level to the 830 m level with decreasing of the value of αP and P%, indicating a normal vertical zoning sequence. A low-medium temperature of 143.3-323.3 ℃ is derived by calculation of pyrite thermoelectric coefficient. The thermoelectric coefficient of the pyrite in the rich ore segment is confined within the range of 0--200 μV/℃. A calculation with empirical formula implies that the lower to middle parts of the orebody have been exhumed until now, whereas the buried ore is spatially quite stable. Furthermore, the authors suggest that good exploring prospect would be expectable below 830 m level.