应用基础与工程科学学报
應用基礎與工程科學學報
응용기출여공정과학학보
JOURNAL OF BASIC SCIENCE AND ENGINEERING
2010年
2期
253-261
,共9页
彭世彰%魏征%孔伟丽%庞桂斌%高焕芝
彭世彰%魏徵%孔偉麗%龐桂斌%高煥芝
팽세창%위정%공위려%방계빈%고환지
水分亏缺%氮素亏缺%气孔导度-光合速率耦合模型%叶气温差%叶绿素相对含量
水分虧缺%氮素虧缺%氣孔導度-光閤速率耦閤模型%葉氣溫差%葉綠素相對含量
수분우결%담소우결%기공도도-광합속솔우합모형%협기온차%협록소상대함량
water deficit%nitrogen deficit%coupled photosynthesis-stomatal conductance model%leaf temperature difference%chlorophyll relative content
叶片气孔导度-光合速率的耦合模型是作物生理模拟的关键,是估算作物生长及水分利用动态的基础.采用盆栽试验实测资料,建立Leuning-Ball气孔导度模型及其耦合模型,考虑水肥因子对气孔导度、光合速率的影响,引入水稻叶片叶气温差、叶绿素相对含量修正气孔导度模型,并进行比较.结果表明,考虑叶气温差、叶绿素相对含量的气孔导度-光合速率耦合模型具有针对水肥限制条件下更高的模拟验证解释能力,针对气孔导度,最大相对误差由125.5%、128.8%分别降至98.2%和126.6%,针对光合速率,平均相对误差由32.3%、74.3%降至20.5%和39.3%,最大相对误差则由331.5%、327.9%降至177.1%和113.4%.
葉片氣孔導度-光閤速率的耦閤模型是作物生理模擬的關鍵,是估算作物生長及水分利用動態的基礎.採用盆栽試驗實測資料,建立Leuning-Ball氣孔導度模型及其耦閤模型,攷慮水肥因子對氣孔導度、光閤速率的影響,引入水稻葉片葉氣溫差、葉綠素相對含量脩正氣孔導度模型,併進行比較.結果錶明,攷慮葉氣溫差、葉綠素相對含量的氣孔導度-光閤速率耦閤模型具有針對水肥限製條件下更高的模擬驗證解釋能力,針對氣孔導度,最大相對誤差由125.5%、128.8%分彆降至98.2%和126.6%,針對光閤速率,平均相對誤差由32.3%、74.3%降至20.5%和39.3%,最大相對誤差則由331.5%、327.9%降至177.1%和113.4%.
협편기공도도-광합속솔적우합모형시작물생리모의적관건,시고산작물생장급수분이용동태적기출.채용분재시험실측자료,건립Leuning-Ball기공도도모형급기우합모형,고필수비인자대기공도도、광합속솔적영향,인입수도협편협기온차、협록소상대함량수정기공도도모형,병진행비교.결과표명,고필협기온차、협록소상대함량적기공도도-광합속솔우합모형구유침대수비한제조건하경고적모의험증해석능력,침대기공도도,최대상대오차유125.5%、128.8%분별강지98.2%화126.6%,침대광합속솔,평균상대오차유32.3%、74.3%강지20.5%화39.3%,최대상대오차칙유331.5%、327.9%강지177.1%화113.4%.
A leaf-scale coupled approach to photosynthesis-stomatal conductance modeling is a key element in predicting physiology of crop, estimating crop growth and water use. In order to consider the effect of moisture and nitrogen deficit of soil on stomatal conductance and photosynthesis, the leaf-air temperature and chlorophyll relative content were introduced to regulate coupled Leuning-Ball photosynthesis-stomatal conductance model. Field data of a pot experiment were used to validate the model. The results show that the improved coupled model yields reasonable interpretation and the best photosynthesis interpretation ability under soil moisture and nitrogen deficit. For stomatal conductance, the maximum relative errors were reduced from 125.5% and 128.8% to 98.2% and 126.6%. For photosynthetic rate, the average relative errors were reduced from 32.3%, 74.3% to 20.5% and 39.3%, and the maximum relative errors from 331.5% and 327.9% down to 113.4% and 177.1%, respectively. The coupled model can reflect the water and energy situation considering the limiting water and nitrogen more reasonably.