振动与冲击
振動與遲擊
진동여충격
JOURNAL OF VIBRATION AND SHOCK
2009年
7期
153-157,186
,共6页
一般支承%输流管道%流固耦合%分岔与混沌%非线性动力学特性
一般支承%輸流管道%流固耦閤%分岔與混沌%非線性動力學特性
일반지승%수류관도%류고우합%분차여혼돈%비선성동역학특성
commonly elastic supports%fluid conveying pipe%fluid-structure interaction(FSI)%bifurcation and cha- os%nonlinear dynamic characteristics
研究两端一般支承垂直放置的输流管道系统,采用非线性动力学分析方法,研究其在自激、参数激励和外激励联合作用下的非线性动力学特性,分析系统出现混沌运动的参数条件和进入混沌运动的途径.数值仿真结果表明,随着平均流速和质量比的增大,系统响应交替出现周期和混沌运动两种形态.系统进入混沌运动的途径为倍周期分岔,由混沌转化为周期运动的途径为倍周期倒分岔.混沌运动和周期运动出现的参数与流体的平均流速和管道端部的支承/约束刚度有很大关联,随着管道端部约束刚度的增大,系统出现混沌运动的区域减小,说明管道端部的约束刚度有益于抑制混沌运动的发生.
研究兩耑一般支承垂直放置的輸流管道繫統,採用非線性動力學分析方法,研究其在自激、參數激勵和外激勵聯閤作用下的非線性動力學特性,分析繫統齣現混沌運動的參數條件和進入混沌運動的途徑.數值倣真結果錶明,隨著平均流速和質量比的增大,繫統響應交替齣現週期和混沌運動兩種形態.繫統進入混沌運動的途徑為倍週期分岔,由混沌轉化為週期運動的途徑為倍週期倒分岔.混沌運動和週期運動齣現的參數與流體的平均流速和管道耑部的支承/約束剛度有很大關聯,隨著管道耑部約束剛度的增大,繫統齣現混沌運動的區域減小,說明管道耑部的約束剛度有益于抑製混沌運動的髮生.
연구량단일반지승수직방치적수류관도계통,채용비선성동역학분석방법,연구기재자격、삼수격려화외격려연합작용하적비선성동역학특성,분석계통출현혼돈운동적삼수조건화진입혼돈운동적도경.수치방진결과표명,수착평균류속화질량비적증대,계통향응교체출현주기화혼돈운동량충형태.계통진입혼돈운동적도경위배주기분차,유혼돈전화위주기운동적도경위배주기도분차.혼돈운동화주기운동출현적삼수여류체적평균류속화관도단부적지승/약속강도유흔대관련,수착관도단부약속강도적증대,계통출현혼돈운동적구역감소,설명관도단부적약속강도유익우억제혼돈운동적발생.
The nonlinear dynamical characteristics of a vertical fluid conveying pipe under condition of commonly e- lastic supports at both ends under the excitation of pulsating fluid and harmonic motion of the base were studied by using the nonlinear analysis methods to find out the systematical parameter conditions and the forerunner of chaos. Numerical re- sults showed that the system goes through the transitions between periodic motion and chaotic motion alternately with in- crease in mean flowrate and mass ratio; period-doubling bifurcation is the route leading to chaotic motion, and the inverse period-doubling bifurcation is its converse way to leave chaotic motion; the parameter conditions of chaotic motion and pe- riodic motion are closely related to the fluid flowrate and the supporting elastic coefficients of the piping system; the para- metric range of chaotic motion becomes smaller with increase in the elastic supporting and restraining coefficients; the co- efficients are good for controlling the chaotic motion.