计算机应用研究
計算機應用研究
계산궤응용연구
APPLICATION RESEARCH OF COMPUTERS
2010年
2期
770-771,774
,共3页
局部特征%在线Boosting%协同训练%目标跟踪
跼部特徵%在線Boosting%協同訓練%目標跟蹤
국부특정%재선Boosting%협동훈련%목표근종
local features%on-line Boosting%co-training%object tracking
针对视频目标跟踪问题,提出了一种基于co-training框架下的在线学习跟踪方法.该方法首先根据两种不同的局部特征,利用在线 Boosting算法分别建立模型,然后采用co-training框架来协同训练,有效避免了模型误差累积和跟踪丢帧等问题.实验证明了该方法的有效性.
針對視頻目標跟蹤問題,提齣瞭一種基于co-training框架下的在線學習跟蹤方法.該方法首先根據兩種不同的跼部特徵,利用在線 Boosting算法分彆建立模型,然後採用co-training框架來協同訓練,有效避免瞭模型誤差纍積和跟蹤丟幀等問題.實驗證明瞭該方法的有效性.
침대시빈목표근종문제,제출료일충기우co-training광가하적재선학습근종방법.해방법수선근거량충불동적국부특정,이용재선 Boosting산법분별건립모형,연후채용co-training광가래협동훈련,유효피면료모형오차루적화근종주정등문제.실험증명료해방법적유효성.
To video object tracking problem,this paper proposed an on-line learning tracking method based on co-training framework.First of all,the method adopted two different local features to build on-line Boosting model,and then,would train samples making use of co-training learning framework,which avoided the cumulative error of the model and dropping frames problem effectively.Furthermore,some experiments have been maded and the results implyed that the new method is very efficient.