分析化学
分析化學
분석화학
CHINESE JOURNAL OF ANALYTICAL CHEMISTRY
2009年
7期
1029-1032
,共4页
訾洪静%淦五二%韩素平%姜宪娟%完玲中
訾洪靜%淦五二%韓素平%薑憲娟%完玲中
자홍정%감오이%한소평%강헌연%완령중
编结反应器%电磁感应加热%冷蒸气原子荧光光谱%无机汞%矿泉水
編結反應器%電磁感應加熱%冷蒸氣原子熒光光譜%無機汞%礦泉水
편결반응기%전자감응가열%랭증기원자형광광보%무궤홍%광천수
Knott reactor%electromagnetic induction heating%cold vapor atomic fluorescence spectrometry%inorganic mercury%mineral water
研究了聚四氟乙烯管编结反应器(KR)在线吸附预富集技术与冷蒸气原子荧光联用测定矿泉水中痕量无机汞的方法.Hg2+与DDTC在线形成Hg2+-DDTC络合物并吸附在KR内壁上,采用电磁感应加热技术,用20% (V/V) HNO3在线加热洗脱并氧化预富集于KR内壁上的Hg2+-DDTC.洗脱液与KBH4溶液反应生成蒸气态汞,直接用冷蒸气原子荧光联用技术检测.20%(V/V)HNO3作为洗脱液的同时也为氢化发生提供了酸性介质.本方法未使用常用的有机洗脱液,具有操作简单和环保等优点.每小时可分析30个样品,最大吸附倍数为35倍,样品分析精密度RSD为2.2%(n=11),检出限(3σ)为2.0 ng/L.
研究瞭聚四氟乙烯管編結反應器(KR)在線吸附預富集技術與冷蒸氣原子熒光聯用測定礦泉水中痕量無機汞的方法.Hg2+與DDTC在線形成Hg2+-DDTC絡閤物併吸附在KR內壁上,採用電磁感應加熱技術,用20% (V/V) HNO3在線加熱洗脫併氧化預富集于KR內壁上的Hg2+-DDTC.洗脫液與KBH4溶液反應生成蒸氣態汞,直接用冷蒸氣原子熒光聯用技術檢測.20%(V/V)HNO3作為洗脫液的同時也為氫化髮生提供瞭痠性介質.本方法未使用常用的有機洗脫液,具有操作簡單和環保等優點.每小時可分析30箇樣品,最大吸附倍數為35倍,樣品分析精密度RSD為2.2%(n=11),檢齣限(3σ)為2.0 ng/L.
연구료취사불을희관편결반응기(KR)재선흡부예부집기술여랭증기원자형광련용측정광천수중흔량무궤홍적방법.Hg2+여DDTC재선형성Hg2+-DDTC락합물병흡부재KR내벽상,채용전자감응가열기술,용20% (V/V) HNO3재선가열세탈병양화예부집우KR내벽상적Hg2+-DDTC.세탈액여KBH4용액반응생성증기태홍,직접용랭증기원자형광련용기술검측.20%(V/V)HNO3작위세탈액적동시야위경화발생제공료산성개질.본방법미사용상용적유궤세탈액,구유조작간단화배보등우점.매소시가분석30개양품,최대흡부배수위35배,양품분석정밀도RSD위2.2%(n=11),검출한(3σ)위2.0 ng/L.
Flow injection on-line sorption preconcentration and separation in a knotted reactor (KR) was coupled to cold vapor atomic fluorescence spectrometry for the determination of trace mercury in mineral water. Mercury was preconcentrated by on-line formation of mercury diethyldithiocarbamate complex (Hg-DDTC) and absorption of the resulting neutral complex on the inner walls of a knotted reactor. A 20%(V/V) HNO3 solution heated by electromagnetic induction heating technique was used as eluent to remove the absorbed Hg-DDTC from the KR, and then the vapor mercury generated by mixing the resulting solution and KBH4 was determined on-line by cold vapor atomic fluorescence spectrometry. The 20% HNO3 was employed as both the efficient eluent and the required acidic medium for subsequent mercury vapor generation in our work. Using 20% HNO3 instead of conventional organic solvent as eluent, the proposed method is simple, easy operational and environmentally friendly. Under the optimal experimental conditions, the sample throughput was approximatively 30/h with an enhancement factor of 35. The detection limit of mercury was 2.0 ng/L. The precision(RSD, n=11) was 2.2% at the 0.1 μg/L Hg2+ level.