数学物理学报
數學物理學報
수학물이학보
ACTA MATHEMATICA SCIENTIA
2010年
2期
289-296
,共8页
随机环境中随机游动%鞅收敛定理%常返性%暂留性
隨機環境中隨機遊動%鞅收斂定理%常返性%暫留性
수궤배경중수궤유동%앙수렴정리%상반성%잠류성
Random walks in random environment%Martingale convergence theorem%Recur-rence%Transience
假定环境是平稳遍历的,对具有有限跳幅的随机环境中的随机游动,该文给出了其常返性暂留性的另一证明. Brémont(2002)的文章中,通过计算逃逸概率的方法给出了证明,而该文的证明采用了鞅收敛定理的方法.
假定環境是平穩遍歷的,對具有有限跳幅的隨機環境中的隨機遊動,該文給齣瞭其常返性暫留性的另一證明. Brémont(2002)的文章中,通過計算逃逸概率的方法給齣瞭證明,而該文的證明採用瞭鞅收斂定理的方法.
가정배경시평은편력적,대구유유한도폭적수궤배경중적수궤유동,해문급출료기상반성잠류성적령일증명. Brémont(2002)적문장중,통과계산도일개솔적방법급출료증명,이해문적증명채용료앙수렴정리적방법.
The authors derive a new proof of a recurrence and transience criteria for a class of random walks in random environment with bounded jumps, where the environment is assumed to be stationary and ergodic. Martingale convergence method is used in this paper, comparing the original one (Brémont (2002)) by the method of computing the exit probability.