微电子学
微電子學
미전자학
MICROELECTRONICS
2009年
6期
879-882
,共4页
葛钟%库黎明%陈海滨%盛方毓%索思卓%闫志瑞
葛鐘%庫黎明%陳海濱%盛方毓%索思卓%閆誌瑞
갈종%고려명%진해빈%성방육%색사탁%염지서
300mm硅片%延性磨削%临界深度%损伤层
300mm硅片%延性磨削%臨界深度%損傷層
300mm규편%연성마삭%림계심도%손상층
300 mm silicon wafer%Ductile grinding%Critical depth%Damage layer
根据脆性材料实现延性磨削时存在临界深度的理论,通过设定磨削参数,使之满足硅片的延性磨削条件.利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)对磨削硅片表面和截面进行分析研究.研究结果表明:硅片表面形成规律的磨削印痕,且磨削印痕微弱,在硅片表面留下的磨削沟槽保留延性磨削特征,硅片表面无微细裂纹和因脆性崩裂产生的凹坑;硅片截面明显地分为非晶层、次表面损伤层、单晶硅层,非晶层厚度约为50~100 nm,表面微细裂纹完全消失,次表面损伤层厚度约为50~150 nm,次表面损伤层存在微细裂纹.
根據脆性材料實現延性磨削時存在臨界深度的理論,通過設定磨削參數,使之滿足硅片的延性磨削條件.利用掃描電子顯微鏡(SEM)、透射電子顯微鏡(TEM)對磨削硅片錶麵和截麵進行分析研究.研究結果錶明:硅片錶麵形成規律的磨削印痕,且磨削印痕微弱,在硅片錶麵留下的磨削溝槽保留延性磨削特徵,硅片錶麵無微細裂紋和因脆性崩裂產生的凹坑;硅片截麵明顯地分為非晶層、次錶麵損傷層、單晶硅層,非晶層厚度約為50~100 nm,錶麵微細裂紋完全消失,次錶麵損傷層厚度約為50~150 nm,次錶麵損傷層存在微細裂紋.
근거취성재료실현연성마삭시존재림계심도적이론,통과설정마삭삼수,사지만족규편적연성마삭조건.이용소묘전자현미경(SEM)、투사전자현미경(TEM)대마삭규편표면화절면진행분석연구.연구결과표명:규편표면형성규률적마삭인흔,차마삭인흔미약,재규편표면류하적마삭구조보류연성마삭특정,규편표면무미세렬문화인취성붕렬산생적요갱;규편절면명현지분위비정층、차표면손상층、단정규층,비정층후도약위50~100 nm,표면미세렬문완전소실,차표면손상층후도약위50~150 nm,차표면손상층존재미세렬문.
Based on the theory that there exists a critical depth for ductile-mode grinding of brittle materials, grinding parameters were set to meet the requirements for ductile grinding of silicon wafers.Surface and cross section of the ground wafer were analyzed using SEM and TEM.It has been shown that weak and regular grinding marks were formed on the wafer surface, and the characteristics of ductile grinding were retained for grinding grooves, and the wafer section was divided into amorphous layer, sub-surface damage layer and single crystal silicon.The amorphous layer, where surface cracks completely disappear, is about 50 nm to 100 nm thick, and the sub-surface damage layer, where fine cracks occur, is about 50 nm to 150 nm thick.