计算机应用研究
計算機應用研究
계산궤응용연구
APPLICATION RESEARCH OF COMPUTERS
2010年
1期
374-376
,共3页
背景杂波抑制%微弱运动目标%小波域离散余弦变换%目标邻域信杂比
揹景雜波抑製%微弱運動目標%小波域離散餘絃變換%目標鄰域信雜比
배경잡파억제%미약운동목표%소파역리산여현변환%목표린역신잡비
background clutter suppression%dim moving target%discrete cosine transform in wavelet domain%signal-to-clutter-noise ratio
针对复杂背景中微弱运动目标检测困难的问题,提出了一种基于小波域DCT变换的背景杂波抑制方法.该方法根据背景杂波和运动目标的不同频率特性,采用低频小波子带频域滤波的方法得到有效抑制背景杂波的残差图像,从而达到抑制背景杂波的目的.该方法首先对原始图像进行小波变换,接着对低频小波子带进行二维DCT变换,再用高斯低通滤波器对DCT变换结果进行滤波,然后对滤波结果进行IDCT变换,最后对滤波前后的低频小波子带作差分处理,对差分结果进行小波逆变换.实验结果表明,该方法处理后得到的残差图像呈现出很好的高斯性和独立性,并且目标邻域信杂比(SCNR)的平均增益比图像直接频域滤波的目标邻域信杂比平均增益提高2 dB以上,算法性能明显优于传统的图像频域滤波算法.
針對複雜揹景中微弱運動目標檢測睏難的問題,提齣瞭一種基于小波域DCT變換的揹景雜波抑製方法.該方法根據揹景雜波和運動目標的不同頻率特性,採用低頻小波子帶頻域濾波的方法得到有效抑製揹景雜波的殘差圖像,從而達到抑製揹景雜波的目的.該方法首先對原始圖像進行小波變換,接著對低頻小波子帶進行二維DCT變換,再用高斯低通濾波器對DCT變換結果進行濾波,然後對濾波結果進行IDCT變換,最後對濾波前後的低頻小波子帶作差分處理,對差分結果進行小波逆變換.實驗結果錶明,該方法處理後得到的殘差圖像呈現齣很好的高斯性和獨立性,併且目標鄰域信雜比(SCNR)的平均增益比圖像直接頻域濾波的目標鄰域信雜比平均增益提高2 dB以上,算法性能明顯優于傳統的圖像頻域濾波算法.
침대복잡배경중미약운동목표검측곤난적문제,제출료일충기우소파역DCT변환적배경잡파억제방법.해방법근거배경잡파화운동목표적불동빈솔특성,채용저빈소파자대빈역려파적방법득도유효억제배경잡파적잔차도상,종이체도억제배경잡파적목적.해방법수선대원시도상진행소파변환,접착대저빈소파자대진행이유DCT변환,재용고사저통려파기대DCT변환결과진행려파,연후대려파결과진행IDCT변환,최후대려파전후적저빈소파자대작차분처리,대차분결과진행소파역변환.실험결과표명,해방법처리후득도적잔차도상정현출흔호적고사성화독립성,병차목표린역신잡비(SCNR)적평균증익비도상직접빈역려파적목표린역신잡비평균증익제고2 dB이상,산법성능명현우우전통적도상빈역려파산법.
Aiming to detect dim moving targets in complex background, the low wavelet belt was frequency filtered to suppress background clutter and get the residual image according to the different frequency characteristics of background clutter and moving targets.Firstly,performed the wavelet transform,and operated DCT of two dimension to the low wavelet belt(LL),filtered the lower frequency components of LL by Gaussian lower pass filter, and then did the IDCT to the filtering results.Operated the difference process between the pre- and after filtering LL.Finally,carried out the inverse wavelet transform.The experiment results show that the residual image obtained by this method has very good Gaussian normality and independence, and the average gain of the target's neighbor SCNR (signal-to-clutter-noise ratio) is improved above 2dB, compared with the image frequency filtering algorithms. So the method has better performance than conventional image frequency filtering method.