烟台大学学报(自然科学与工程版)
煙檯大學學報(自然科學與工程版)
연태대학학보(자연과학여공정판)
JOURNAL OF YANTAI UNIVERSITY(NATURAL SCIENCE AND ENGINEERING EDITION)
2008年
3期
161-165
,共5页
边值问题%Leray-Schauder不动点定理%Green函数
邊值問題%Leray-Schauder不動點定理%Green函數
변치문제%Leray-Schauder불동점정리%Green함수
设f :[0, 1] ×R2→ R满足Caratheodory条件, (1-t)e(t) ∈L1[0, 1],0<ξ1<ξ2<…<ξm-2<1.本文运用Leray-Schauder不动点定理来考虑m点边值问题x"(t)=f(t,x(t),x'(t))+e(t),t∈(0,1), α0x(0)+α1x'(0)=0,x(1)=∑m-2i=1βix(ξi),C[0,1]∩C1[0,1)解的存在性.
設f :[0, 1] ×R2→ R滿足Caratheodory條件, (1-t)e(t) ∈L1[0, 1],0<ξ1<ξ2<…<ξm-2<1.本文運用Leray-Schauder不動點定理來攷慮m點邊值問題x"(t)=f(t,x(t),x'(t))+e(t),t∈(0,1), α0x(0)+α1x'(0)=0,x(1)=∑m-2i=1βix(ξi),C[0,1]∩C1[0,1)解的存在性.
설f :[0, 1] ×R2→ R만족Caratheodory조건, (1-t)e(t) ∈L1[0, 1],0<ξ1<ξ2<…<ξm-2<1.본문운용Leray-Schauder불동점정리래고필m점변치문제x"(t)=f(t,x(t),x'(t))+e(t),t∈(0,1), α0x(0)+α1x'(0)=0,x(1)=∑m-2i=1βix(ξi),C[0,1]∩C1[0,1)해적존재성.