航空学报
航空學報
항공학보
ACTA AERONAUTICA ET ASTRONAUTICA SINICA
2009年
12期
2380-2386
,共7页
胡利平%刘宏伟%尹奎英%吴顺君
鬍利平%劉宏偉%尹奎英%吳順君
호리평%류굉위%윤규영%오순군
目标识别%合成孔径雷达%子类判决分析%最大散度差%Fisher线性判决分析
目標識彆%閤成孔徑雷達%子類判決分析%最大散度差%Fisher線性判決分析
목표식별%합성공경뢰체%자류판결분석%최대산도차%Fisher선성판결분석
target recognition%synthetic aperture radar%clustering-based discriminant analysis%maximumscatter difference (MSD)%Fisher linear discriminant analysis(FLDA)
针对Fisher线性判决分析(FLDA)在图像识别应用中遇到的小样本问题,提出了两向二维最大子类散度差((2D)~2MCSD)鉴别分析的图像特征提取方法.首先找到每类数据的子类划分,再根据这些子类构造基于二维图像矩阵的子类类间和子类类内散布矩阵,最后用子类类间与子类类内散布之差作为鉴别准则求取投影矢量.该方法可以处理多模分布问题,从根本上避免了矩阵求逆和小样本问题,加快了特征抽取的速度,且同时对图像行和列进行压缩,克服了二维最大子类散度差(2DMCSD)鉴别分析和另一种形式的2DMCSD(Alternate 2DMCSD)的特征维数较大的问题.基于美国运动和静止目标获取与识别(MSTAR)公共数据库提供的实测数据的实验结果表明:本文方法的性能优于现有的子空间方法;与2DMCSD和Alter-nate 2DMCSD相比,可大大降低特征维数、提高识别性能.
針對Fisher線性判決分析(FLDA)在圖像識彆應用中遇到的小樣本問題,提齣瞭兩嚮二維最大子類散度差((2D)~2MCSD)鑒彆分析的圖像特徵提取方法.首先找到每類數據的子類劃分,再根據這些子類構造基于二維圖像矩陣的子類類間和子類類內散佈矩陣,最後用子類類間與子類類內散佈之差作為鑒彆準則求取投影矢量.該方法可以處理多模分佈問題,從根本上避免瞭矩陣求逆和小樣本問題,加快瞭特徵抽取的速度,且同時對圖像行和列進行壓縮,剋服瞭二維最大子類散度差(2DMCSD)鑒彆分析和另一種形式的2DMCSD(Alternate 2DMCSD)的特徵維數較大的問題.基于美國運動和靜止目標穫取與識彆(MSTAR)公共數據庫提供的實測數據的實驗結果錶明:本文方法的性能優于現有的子空間方法;與2DMCSD和Alter-nate 2DMCSD相比,可大大降低特徵維數、提高識彆性能.
침대Fisher선성판결분석(FLDA)재도상식별응용중우도적소양본문제,제출료량향이유최대자류산도차((2D)~2MCSD)감별분석적도상특정제취방법.수선조도매류수거적자류화분,재근거저사자류구조기우이유도상구진적자류류간화자류류내산포구진,최후용자류류간여자류류내산포지차작위감별준칙구취투영시량.해방법가이처리다모분포문제,종근본상피면료구진구역화소양본문제,가쾌료특정추취적속도,차동시대도상행화렬진행압축,극복료이유최대자류산도차(2DMCSD)감별분석화령일충형식적2DMCSD(Alternate 2DMCSD)적특정유수교대적문제.기우미국운동화정지목표획취여식별(MSTAR)공공수거고제공적실측수거적실험결과표명:본문방법적성능우우현유적자공간방법;여2DMCSD화Alter-nate 2DMCSD상비,가대대강저특정유수、제고식별성능.
To solve the small sample size (SSS) problem of Fisher linear discriminant analysis (FLDA) when it is applied to image recognition tasks, a novel image feature extraction technique is proposed which is called two-directional two-dimensional maximum clustering-based scatter difference ((2D)~2 MCSD) discriminant analysis. In this method, the possible clusters for each class are first found, and then the between-cluster and within-cluster scatter matrices are constructed from the 2D image matrices based on these clusters. Finally, projection vectors are sought by taking the difference of between-class scatter and within-class scatter as the discriminant criterion. Thus the method can not only deal with multimodal distribution problems but also avoid inverse matrix calculation and SSS problems, and increase the efficiency of feature extraction. Moreover, the (2D)~2 MCSD compresses image rows and columns simultaneously, thus overcoming the problem of too many features of 2DMCSD and Alternate 2DMCSD. Experiments on a moving and stationary target acquisition and recognition (MSTAR) public database demonstrate that the (2D)~2 MCSD is more efficient than some existing subspace methods. Furthermore, compared with 2DMCSD and Alternate 2DMCSD, (2D)~2 MCSD achieves higher recognition rates with much less memory requirements.