计算机与应用化学
計算機與應用化學
계산궤여응용화학
COMPUTERS AND APPLIED CHEMISTRY
2010年
1期
99-102
,共4页
图像分割%边缘检测%凹点匹配%PTA
圖像分割%邊緣檢測%凹點匹配%PTA
도상분할%변연검측%요점필배%PTA
image segmenting%edge detection%concave points match%PTA
针对图像处理中多个颗粒重叠的问题,提出了1种利用重叠区域边界寻找凹点来分割重叠图像的算法.算法利用Canny边缘检测获得重叠区域的边界轮廓,对于边缘检测所得边界存在断裂的情况,首先进行连续边界轮廓的恢复;然后在获得的连续边界轮廓上寻找凹点,将相邻的凹点视为1个凹点群,取其中凹陷最显著的点作为待匹配凹点,并赋以一定的权值;再根据凹点匹配条件对待匹配凹点进行匹配,将成功匹配的凹点对作为分割点对.对多幅模拟图像和PTA晶体图像的分割结果表明,算法不仅适用于颗粒形状规则、大小差异较小颗粒的重叠情况,对于狭长颗粒和大小差异明显颗粒的重叠情况也有良好的分割效果.
針對圖像處理中多箇顆粒重疊的問題,提齣瞭1種利用重疊區域邊界尋找凹點來分割重疊圖像的算法.算法利用Canny邊緣檢測穫得重疊區域的邊界輪廓,對于邊緣檢測所得邊界存在斷裂的情況,首先進行連續邊界輪廓的恢複;然後在穫得的連續邊界輪廓上尋找凹點,將相鄰的凹點視為1箇凹點群,取其中凹陷最顯著的點作為待匹配凹點,併賦以一定的權值;再根據凹點匹配條件對待匹配凹點進行匹配,將成功匹配的凹點對作為分割點對.對多幅模擬圖像和PTA晶體圖像的分割結果錶明,算法不僅適用于顆粒形狀規則、大小差異較小顆粒的重疊情況,對于狹長顆粒和大小差異明顯顆粒的重疊情況也有良好的分割效果.
침대도상처리중다개과립중첩적문제,제출료1충이용중첩구역변계심조요점래분할중첩도상적산법.산법이용Canny변연검측획득중첩구역적변계륜곽,대우변연검측소득변계존재단렬적정황,수선진행련속변계륜곽적회복;연후재획득적련속변계륜곽상심조요점,장상린적요점시위1개요점군,취기중요함최현저적점작위대필배요점,병부이일정적권치;재근거요점필배조건대대필배요점진행필배,장성공필배적요점대작위분할점대.대다폭모의도상화PTA정체도상적분할결과표명,산법불부괄용우과립형상규칙、대소차이교소과립적중첩정황,대우협장과립화대소차이명현과립적중첩정황야유량호적분할효과.
To deal with overlapped particles in image processing,a segment algorithm is proposed by matching concave points that are obtained from the edge of the overlapped area,which is obtained by canny edge detection.In the case that there is crack during the edge from the edge detection,the continuous edge should be recovered.Then the concave points are searched by judging the edge points and the sequential concave points are regarded as a cluster during which the most concave point is to be matched.Each concave point is given a particular weight and matching criteria is applied to these concave points and the successfully matched concave points are used to segment the overlapped particles.The segment results for simulation images and real images of PTA particles demonstrated that the algorithm is suitable for the situation that regular-shaped particles or overlapped particles with similar size.What's more,the algorithm is suitable for the situation that long-narrow particles or particles with wide-range-square overlap with each other.