计算机科学
計算機科學
계산궤과학
COMPUTER SCIENCE
2010年
2期
99-104
,共6页
汪静%印鉴%郑利荣%黄创光
汪靜%印鑒%鄭利榮%黃創光
왕정%인감%정리영%황창광
电子商务%推荐系统%协同过滤%共同评分%相似性权重
電子商務%推薦繫統%協同過濾%共同評分%相似性權重
전자상무%추천계통%협동과려%공동평분%상사성권중
E-commerce%Recommendation system%Collaborative filtering%Co-rating%Similarity weight
协同过滤推荐算法是在电子商务推荐系统中应用最成功的推荐技术之一.提出了一种基于共同评分和相似性权重的协同过滤推荐算法.该算法选择用户的共同评分数据计算用户的相似性,选择项目被用户共同评分的数据计算项目的相似性,再分别计算基于用户以及项目算法的预测评分,然后通过相似性权重结合两者得到最终的预测结果,最后再根据预测结果产生推荐.实际数据的实验结果表明,提出的算法显著提高了预测准确度,从而提高了推荐质量.
協同過濾推薦算法是在電子商務推薦繫統中應用最成功的推薦技術之一.提齣瞭一種基于共同評分和相似性權重的協同過濾推薦算法.該算法選擇用戶的共同評分數據計算用戶的相似性,選擇項目被用戶共同評分的數據計算項目的相似性,再分彆計算基于用戶以及項目算法的預測評分,然後通過相似性權重結閤兩者得到最終的預測結果,最後再根據預測結果產生推薦.實際數據的實驗結果錶明,提齣的算法顯著提高瞭預測準確度,從而提高瞭推薦質量.
협동과려추천산법시재전자상무추천계통중응용최성공적추천기술지일.제출료일충기우공동평분화상사성권중적협동과려추천산법.해산법선택용호적공동평분수거계산용호적상사성,선택항목피용호공동평분적수거계산항목적상사성,재분별계산기우용호이급항목산법적예측평분,연후통과상사성권중결합량자득도최종적예측결과,최후재근거예측결과산생추천.실제수거적실험결과표명,제출적산법현저제고료예측준학도,종이제고료추천질량.
Collaborative filtering recommendation algorithm is one of the most successful technologies in the e-commerce recommendation system.This paper presented a collaborative filtering algorithm based on co-ratings and similarity weight.First,the co-ratings were selected to compute the similarity between users or items.Most importantly,the algorithm acquiring the last prediction result was acquired by combining prior predicting rating with similarity weight,from which recommendation was produced.The experimental results in real data show this algorithm can consistently achieve better prediction accuracy,thereby brings better recommendation quality.