国际医药卫生导报
國際醫藥衛生導報
국제의약위생도보
INTERNATIONAL MEDICINE & HEALTH GUIDANCE NEWS
2010年
20期
2443-2447
,共5页
金川%张永晖%胡晓晔%周燕华%韦玉香%李惠航%李浩
金川%張永暉%鬍曉曄%週燕華%韋玉香%李惠航%李浩
금천%장영휘%호효엽%주연화%위옥향%리혜항%리호
肺癌%鳞癌%蛋白质质谱%诊断
肺癌%鱗癌%蛋白質質譜%診斷
폐암%린암%단백질질보%진단
Lung cancer%Squamous cell carcinoma%SELDI%Diagnosis
目的 探讨应用血清蛋白质谱建立肺鳞癌患者的诊断模型,提高肺鳞癌早期诊断率.方法 应用表面加强激光解吸电离飞行时间质谱(Surface-enhanced desorption ionization time-of-flight mass spectrometry,SELDI-TOF-MS)技术及其配套的蛋白质芯片对50例肺鳞癌患者和50例健康人血清中的蛋白质组图谱进行检测,结合相关软件建立决策分类树诊断模型,并评估该模型的诊断价值.结果 两组间有9个差异性表达蛋白峰,其中3个在肺鳞癌患者血清中高表达,m/z(质荷比)分别是9 194.06 Da,11 681.15 Da和51 370.19 Da,应用数据建立分类树模型,获得了一个由7个蛋白9 194.06 Da,51 370.1 Da,15 879.1 Da,6 624.57 Da,8 929.80 Da,11 681.1 Da,1 013.77 Da组成的标志蛋白组合模式.在训练组中,该模型的敏感性和特异性分别为92%和96%.结论 该模型对诊断肺鳞癌具有较高的灵敏度和特异度,值得临床应用.
目的 探討應用血清蛋白質譜建立肺鱗癌患者的診斷模型,提高肺鱗癌早期診斷率.方法 應用錶麵加彊激光解吸電離飛行時間質譜(Surface-enhanced desorption ionization time-of-flight mass spectrometry,SELDI-TOF-MS)技術及其配套的蛋白質芯片對50例肺鱗癌患者和50例健康人血清中的蛋白質組圖譜進行檢測,結閤相關軟件建立決策分類樹診斷模型,併評估該模型的診斷價值.結果 兩組間有9箇差異性錶達蛋白峰,其中3箇在肺鱗癌患者血清中高錶達,m/z(質荷比)分彆是9 194.06 Da,11 681.15 Da和51 370.19 Da,應用數據建立分類樹模型,穫得瞭一箇由7箇蛋白9 194.06 Da,51 370.1 Da,15 879.1 Da,6 624.57 Da,8 929.80 Da,11 681.1 Da,1 013.77 Da組成的標誌蛋白組閤模式.在訓練組中,該模型的敏感性和特異性分彆為92%和96%.結論 該模型對診斷肺鱗癌具有較高的靈敏度和特異度,值得臨床應用.
목적 탐토응용혈청단백질보건립폐린암환자적진단모형,제고폐린암조기진단솔.방법 응용표면가강격광해흡전리비행시간질보(Surface-enhanced desorption ionization time-of-flight mass spectrometry,SELDI-TOF-MS)기술급기배투적단백질심편대50례폐린암환자화50례건강인혈청중적단백질조도보진행검측,결합상관연건건립결책분류수진단모형,병평고해모형적진단개치.결과 량조간유9개차이성표체단백봉,기중3개재폐린암환자혈청중고표체,m/z(질하비)분별시9 194.06 Da,11 681.15 Da화51 370.19 Da,응용수거건립분류수모형,획득료일개유7개단백9 194.06 Da,51 370.1 Da,15 879.1 Da,6 624.57 Da,8 929.80 Da,11 681.1 Da,1 013.77 Da조성적표지단백조합모식.재훈련조중,해모형적민감성화특이성분별위92%화96%.결론 해모형대진단폐린암구유교고적령민도화특이도,치득림상응용.
Objective To improve the early diagnostic rate of lung squamous cell carcinoma by using surface-enhanced desorption ionization time-of-fight mass spectrometry (SELDITOF-MS) to develop proteomic diagnosis. Methods 50 patients with lung cancer and 50 healthy individuals were detected using SELDI-TOF-MS and protein chips.The diagnostic model was established with the assistance of software and its diagnostic value was evaluated. Results There were nine peaks for the differently expressed proteins in the two groups. Three of which were highly expressed in patients with lung cancer (m/z: 9194.06, 11681.15, and 51370.19). Using tree analysis pattern, the combination of seven biomarkers (9194.06, 51370.1, 15879.1, 6624.57, 8929.80, 11681.1, and 1013.77) may identify lung cancer from normal controls with a sensitivity of 92% and a specificity of 96%.Conclusions The profiling has a high sensitivity and specificity to identify lung cancer.