光电子技术
光電子技術
광전자기술
OPTOELECTRONIC TECHNOLOGY
2009年
4期
231-235
,共5页
林志龙%袁军林%翁卫祥%杨雄%郭太良
林誌龍%袁軍林%翁衛祥%楊雄%郭太良
림지룡%원군림%옹위상%양웅%곽태량
Al/Ag/Al薄膜%薄膜电极%微观结构%界面化学反应
Al/Ag/Al薄膜%薄膜電極%微觀結構%界麵化學反應
Al/Ag/Al박막%박막전겁%미관결구%계면화학반응
Al/Ag/Al thin film%thin film electrode%microstructure%interface reaction
为开发大尺寸场发射显示器需要的能承受高温热处理的薄膜电极,以Al作为Ag层的保护层和与玻璃衬底的粘附层,采用直流磁控溅射制备了Al/Ag/Al复合薄膜及其电极.采用XRD、AFM、光学显微镜和电性能测试系统,研究不同温度热处理对复合薄膜和电极结构、表面形貌和电性能的影响.由于表面致密的Al2O3膜的保护,使得加热退火(<600℃)不会对Al/Ag/Al薄膜和电极造成明显的氧化,然而Al层与Ag层发生的界面扩散和固相反应增大了电极的电阻率(从5.0×10~(-8) Ω·m 上升至23.6×10~(-8) Ω·m).另外热处理温度足够高时(500℃、600℃),Ag原子向表面的扩散一定程度上降低了电极的化学稳定性.尽管如此,与Cr/Cu/Cr薄膜电极相比Al/Ag/Al薄膜电极仍然是一种能够承受高温热处理并且保持较低电阻率的新型电极.
為開髮大呎吋場髮射顯示器需要的能承受高溫熱處理的薄膜電極,以Al作為Ag層的保護層和與玻璃襯底的粘附層,採用直流磁控濺射製備瞭Al/Ag/Al複閤薄膜及其電極.採用XRD、AFM、光學顯微鏡和電性能測試繫統,研究不同溫度熱處理對複閤薄膜和電極結構、錶麵形貌和電性能的影響.由于錶麵緻密的Al2O3膜的保護,使得加熱退火(<600℃)不會對Al/Ag/Al薄膜和電極造成明顯的氧化,然而Al層與Ag層髮生的界麵擴散和固相反應增大瞭電極的電阻率(從5.0×10~(-8) Ω·m 上升至23.6×10~(-8) Ω·m).另外熱處理溫度足夠高時(500℃、600℃),Ag原子嚮錶麵的擴散一定程度上降低瞭電極的化學穩定性.儘管如此,與Cr/Cu/Cr薄膜電極相比Al/Ag/Al薄膜電極仍然是一種能夠承受高溫熱處理併且保持較低電阻率的新型電極.
위개발대척촌장발사현시기수요적능승수고온열처리적박막전겁,이Al작위Ag층적보호층화여파리츤저적점부층,채용직류자공천사제비료Al/Ag/Al복합박막급기전겁.채용XRD、AFM、광학현미경화전성능측시계통,연구불동온도열처리대복합박막화전겁결구、표면형모화전성능적영향.유우표면치밀적Al2O3막적보호,사득가열퇴화(<600℃)불회대Al/Ag/Al박막화전겁조성명현적양화,연이Al층여Ag층발생적계면확산화고상반응증대료전겁적전조솔(종5.0×10~(-8) Ω·m 상승지23.6×10~(-8) Ω·m).령외열처리온도족구고시(500℃、600℃),Ag원자향표면적확산일정정도상강저료전겁적화학은정성.진관여차,여Cr/Cu/Cr박막전겁상비Al/Ag/Al박막전겁잉연시일충능구승수고온열처리병차보지교저전조솔적신형전겁.
In order to develop new oxidation resistant electrode for large screen FED panels, a novel Al/Ag/Al (60 nm/660 nm/60 nm) thin film electrode was fabricated by DC magnetron sputtering, in which Al layer was applied as both protective layer and adhesion layer of Ag layer. Different techniques, such as XRD, AFM, optical microscopy and electric measurement were utilized to study the crystal structure, surface morphology and electric conduction of as-prepared and annealed samples treated at different temperatures. Due to the protection of dense Al_2O_3 layer, no significant oxidation was observed even after annealing at 600℃. However, electric resistivity was elevated as high sa 23.6×10~(-8)Ω·m due to diffusion and reaction between Al and Ag atoms. Nonetheless, comparing with Cr/Cu/Cr electrode the Al/Ag/Al is a new oxidation resistant electrode that can with stand high temperature treatment process.