石油学报(石油加工)
石油學報(石油加工)
석유학보(석유가공)
ACTA PETROLEI SINICA(PETROLEUM PROCESSING SECTION)
2010年
1期
1-7
,共7页
烷基化%异丁烷%丁烯%碳正离子%基元反应%反应网络
烷基化%異丁烷%丁烯%碳正離子%基元反應%反應網絡
완기화%이정완%정희%탄정리자%기원반응%반응망락
alkylation%isobutane%butene%carbenium%elementary reaction%reaction network
利用分子模拟方法,对异丁烷-丁烯烷基化反应体系中C_4和C_8碳正离子可能进行的各类基元反应进行了研究.结果表明,对于C_4碳正离子而言,2种伯丁基碳正离子的能量明显较高,而仲丁基碳正离子和叔丁基碳正离子的能量分别比伯正丁基碳正离子低71.94 kJ/mol和125.99 kJ/mol;对于C_8碳正离子而言,所有的伯碳正离子在结构优化时,均自发地异构成了相应的C_8仲碳正离子或叔碳正离子.这表明异丁烷-丁烯烷基化反应体系中C_4和C_8伯碳正离子不可能存在,或者说存在几率很低.依据量子化学计算结果,确定了异丁烷-丁烯烷基化反应体系中可能存在的碳正离子中间体,依据碳正离子反应假设,确定了12种烯烃质子化反应、29种碳正离子异构化反应、32种碳正离子与丁烯的加成反应、30种碳正离子与异丁烷之间的负氢离子转移反应和18种碳正离子脱附反应.在此基础之上,构建了涉及60个物种和121个基元反应的具有较强预测能力的基元反应网络.
利用分子模擬方法,對異丁烷-丁烯烷基化反應體繫中C_4和C_8碳正離子可能進行的各類基元反應進行瞭研究.結果錶明,對于C_4碳正離子而言,2種伯丁基碳正離子的能量明顯較高,而仲丁基碳正離子和叔丁基碳正離子的能量分彆比伯正丁基碳正離子低71.94 kJ/mol和125.99 kJ/mol;對于C_8碳正離子而言,所有的伯碳正離子在結構優化時,均自髮地異構成瞭相應的C_8仲碳正離子或叔碳正離子.這錶明異丁烷-丁烯烷基化反應體繫中C_4和C_8伯碳正離子不可能存在,或者說存在幾率很低.依據量子化學計算結果,確定瞭異丁烷-丁烯烷基化反應體繫中可能存在的碳正離子中間體,依據碳正離子反應假設,確定瞭12種烯烴質子化反應、29種碳正離子異構化反應、32種碳正離子與丁烯的加成反應、30種碳正離子與異丁烷之間的負氫離子轉移反應和18種碳正離子脫附反應.在此基礎之上,構建瞭涉及60箇物種和121箇基元反應的具有較彊預測能力的基元反應網絡.
이용분자모의방법,대이정완-정희완기화반응체계중C_4화C_8탄정리자가능진행적각류기원반응진행료연구.결과표명,대우C_4탄정리자이언,2충백정기탄정리자적능량명현교고,이중정기탄정리자화숙정기탄정리자적능량분별비백정정기탄정리자저71.94 kJ/mol화125.99 kJ/mol;대우C_8탄정리자이언,소유적백탄정리자재결구우화시,균자발지이구성료상응적C_8중탄정리자혹숙탄정리자.저표명이정완-정희완기화반응체계중C_4화C_8백탄정리자불가능존재,혹자설존재궤솔흔저.의거양자화학계산결과,학정료이정완-정희완기화반응체계중가능존재적탄정리자중간체,의거탄정리자반응가설,학정료12충희경질자화반응、29충탄정리자이구화반응、32충탄정리자여정희적가성반응、30충탄정리자여이정완지간적부경리자전이반응화18충탄정리자탈부반응.재차기출지상,구건료섭급60개물충화121개기원반응적구유교강예측능력적기원반응망락.
Density functional theory-based ab-initio quantum method was selected to optimize the structure of butyl and octyl carbeniums. Calculation results showed that primary butyl carbenium was less stable than secondary and tertiary butyl carbenium, and the energy of secondary and tertiary butyl carbenium were 71. 94 kJ/mol and 125. 99 kJ/mol lower than that of primary butyl carbenium respectively. As for octyl carbeniums, it was proved that all primary octyl carbenium spontaneously turned into corresponding secondary or tertiary octyl carbenium while being optimized, which indicated that there was no or very low probability for primary carbenium to exist in isobutane-butene system. Based on these quantum results, possible carbenium intermediates were chosen, and according to the carbenium mechanism: all main possible elementary reactions were designed, which consisted of 12 olefin protonation reactions, 29 isomerization reactions, 32 addition of carbenium to various butenes, 30 hydride transfer reactions and 18 deproponation of carbeniums. As a result, a powerful elementary reaction network has been established for isobutane-butene alkylation system.