西安交通大学学报
西安交通大學學報
서안교통대학학보
JOURNAL OF XI'AN JIAOTONG UNIVERSITY
2010年
4期
119-124
,共6页
心理意识%小波分解%支持向量机%测谎
心理意識%小波分解%支持嚮量機%測謊
심리의식%소파분해%지지향량궤%측황
mentality%wavelet decomposition%support vector machines%lie detection
采用小波分解和支持向量机(SVM)技术,提出了一种对说谎脑电(EEG)信号特征进行分类的方法,将其应用于心理意识真实性的检测,获得了满意的结果.以真伪已明确的有意义的个人信息(如姓名、生日)作为被测试的隐藏信息,应用隐藏信息(CIT)测试模式对15名受试者各进行两组测试,并记录其脑电(EEG)信号.提取了探测刺激和无关刺激诱发EEG信号的小波系数,并应用具有统计学意义的特征参数作为SVM分类器的输入进行识别分类.实验结果显示,应用leave-one-out交叉验证法对30组样本数据进行训练测试,获得平均正确识别率为88.3%.因此,该方法可以作为一种心理意识真实性检测的新方法,具有无创、较高正确检测率等优点.
採用小波分解和支持嚮量機(SVM)技術,提齣瞭一種對說謊腦電(EEG)信號特徵進行分類的方法,將其應用于心理意識真實性的檢測,穫得瞭滿意的結果.以真偽已明確的有意義的箇人信息(如姓名、生日)作為被測試的隱藏信息,應用隱藏信息(CIT)測試模式對15名受試者各進行兩組測試,併記錄其腦電(EEG)信號.提取瞭探測刺激和無關刺激誘髮EEG信號的小波繫數,併應用具有統計學意義的特徵參數作為SVM分類器的輸入進行識彆分類.實驗結果顯示,應用leave-one-out交扠驗證法對30組樣本數據進行訓練測試,穫得平均正確識彆率為88.3%.因此,該方法可以作為一種心理意識真實性檢測的新方法,具有無創、較高正確檢測率等優點.
채용소파분해화지지향량궤(SVM)기술,제출료일충대설황뇌전(EEG)신호특정진행분류적방법,장기응용우심리의식진실성적검측,획득료만의적결과.이진위이명학적유의의적개인신식(여성명、생일)작위피측시적은장신식,응용은장신식(CIT)측시모식대15명수시자각진행량조측시,병기록기뇌전(EEG)신호.제취료탐측자격화무관자격유발EEG신호적소파계수,병응용구유통계학의의적특정삼수작위SVM분류기적수입진행식별분류.실험결과현시,응용leave-one-out교차험증법대30조양본수거진행훈련측시,획득평균정학식별솔위88.3%.인차,해방법가이작위일충심리의식진실성검측적신방법,구유무창、교고정학검측솔등우점.
A practical strategy for classifying the lying electroencephalograph (EEG) characters by wavelet decomposition and support vector machines (SVM) techniques is presented to get a satisfactory results in identifying the mentality facticity. Some significant personal information is ensured, such as name and birthday, and selected as the concealed information. 15 subjects participate in two groups of concealed information tests (CIT) and their EEGs are recorded. Applying wavelet decomposition, the wavelet coefficients corresponding to EEG evoked by probe information and by irrelevant information respectively are evaluated. Then the feature coefficients containing statistical significance are extracted as the input parameters of SVM. 30 samples are chosen to train and test the performance of classifier by leave-one-out cross-validation, 88. 3% accuracy can be achieved in probe information detection.