信息安全与通信保密
信息安全與通信保密
신식안전여통신보밀
CHINA INFORMATION SECURITY
2011年
9期
50-52,55
,共4页
徐胤%毛经纬%赵磊%归琳%刘勃%张文军
徐胤%毛經緯%趙磊%歸琳%劉勃%張文軍
서윤%모경위%조뢰%귀림%류발%장문군
低密度奇偶校验码%译码算法%归一化互信息%密度进化理论
低密度奇偶校驗碼%譯碼算法%歸一化互信息%密度進化理論
저밀도기우교험마%역마산법%귀일화호신식%밀도진화이론
LDPC%decoding algorithm%generalized mutual information%density evolution
介绍了低密度奇偶校验码(LDPC)的几种常用译码算法及其优缺点,特别用密度进化理论分析了归一化置信传播(Normalized BP-based)和偏移置信传播算法(Offset BP-based)的外信息概率分布和演化。基于此,分别针对Normalized BP-based和Offset BP-based算法提出了广义互信息理论(Generalized Mutual Information)及其计算公式,同时提出了改进的因子自适应LDPC译码算法,在每一次译码过程中通过一维搜索,可以获得一个最佳的修正因子,该因子能够最大化广义互信息,从而获得最佳的译码性能。分析和仿真数据表明,提出的因子自适应算法比传统的算法具有更好的性能。
介紹瞭低密度奇偶校驗碼(LDPC)的幾種常用譯碼算法及其優缺點,特彆用密度進化理論分析瞭歸一化置信傳播(Normalized BP-based)和偏移置信傳播算法(Offset BP-based)的外信息概率分佈和縯化。基于此,分彆針對Normalized BP-based和Offset BP-based算法提齣瞭廣義互信息理論(Generalized Mutual Information)及其計算公式,同時提齣瞭改進的因子自適應LDPC譯碼算法,在每一次譯碼過程中通過一維搜索,可以穫得一箇最佳的脩正因子,該因子能夠最大化廣義互信息,從而穫得最佳的譯碼性能。分析和倣真數據錶明,提齣的因子自適應算法比傳統的算法具有更好的性能。
개소료저밀도기우교험마(LDPC)적궤충상용역마산법급기우결점,특별용밀도진화이론분석료귀일화치신전파(Normalized BP-based)화편이치신전파산법(Offset BP-based)적외신식개솔분포화연화。기우차,분별침대Normalized BP-based화Offset BP-based산법제출료엄의호신식이론(Generalized Mutual Information)급기계산공식,동시제출료개진적인자자괄응LDPC역마산법,재매일차역마과정중통과일유수색,가이획득일개최가적수정인자,해인자능구최대화엄의호신식,종이획득최가적역마성능。분석화방진수거표명,제출적인자자괄응산법비전통적산법구유경호적성능。
This paper first presents several commonly-used decoding algorithms for the well-know low-density-parity-check(LDPC) code,then analyzes its pros and cons. The density evolution theory is employed to trace the probability density function of the extrinsic information in the iterative decoding for the Normalized BP-based and Offset BP-based algorithms. This paper further describes the concept of generalized mutual information and proposes two formulas for N-BP and O-BP-based algorithms respectively. And upon this,a coefficient-adaptive decoding algorithm is proposed. In each decoding iteration,the corresponding optimal correction coefficient can be obtained via one dimensional global search,this could also maximize the generalized mutual information,i.e.,guarantee the best decoding performance. Analysis and simulation results indicate that the proposed coefficient-adaptive algorithm is better than the traditional algorithms.