高电压技术
高電壓技術
고전압기술
HIGH VOLTAGE ENGINEERING
2010年
2期
434-438
,共5页
汪晓东%汪轲%汪金山%张浩然
汪曉東%汪軻%汪金山%張浩然
왕효동%왕가%왕금산%장호연
电磁兼容性%静电放电%参数辨识%模型%粒子群优化%遗传算法
電磁兼容性%靜電放電%參數辨識%模型%粒子群優化%遺傳算法
전자겸용성%정전방전%삼수변식%모형%입자군우화%유전산법
electromagnetic compatibility%electrostatic discharge%parameter identification%model%particle swarm optimization%genetic algorithm
为了获得精确的静电放电模型,提出了一种应用粒子群优化算法的静电放电模型参数辨识新方法.以Heidler雷电流方程的静电放电模型参数为辨识对象,分别以仿真及实验数据验证了该方法的可行性,并从电流波形的整体和局部两方面对拟合效果进行了评估.结果表明,与遗传算法相比,粒子群优化方法的执行速度更快,所得的辨识参数精度更高,粒子群优化方法对电流波形的整体和局部关键点的拟合度均高于遗传算法.因此,粒子群算法较遗传算法更适用于解决静电放电模型参数辨识问题.此外,从实例可以看出,粒子群算法不需要过多的初始参数值先验知识,而只须提供一个较宽的初始参数搜索范围即可获得良好的辨识结果.
為瞭穫得精確的靜電放電模型,提齣瞭一種應用粒子群優化算法的靜電放電模型參數辨識新方法.以Heidler雷電流方程的靜電放電模型參數為辨識對象,分彆以倣真及實驗數據驗證瞭該方法的可行性,併從電流波形的整體和跼部兩方麵對擬閤效果進行瞭評估.結果錶明,與遺傳算法相比,粒子群優化方法的執行速度更快,所得的辨識參數精度更高,粒子群優化方法對電流波形的整體和跼部關鍵點的擬閤度均高于遺傳算法.因此,粒子群算法較遺傳算法更適用于解決靜電放電模型參數辨識問題.此外,從實例可以看齣,粒子群算法不需要過多的初始參數值先驗知識,而隻鬚提供一箇較寬的初始參數搜索範圍即可穫得良好的辨識結果.
위료획득정학적정전방전모형,제출료일충응용입자군우화산법적정전방전모형삼수변식신방법.이Heidler뇌전류방정적정전방전모형삼수위변식대상,분별이방진급실험수거험증료해방법적가행성,병종전류파형적정체화국부량방면대의합효과진행료평고.결과표명,여유전산법상비,입자군우화방법적집행속도경쾌,소득적변식삼수정도경고,입자군우화방법대전류파형적정체화국부관건점적의합도균고우유전산법.인차,입자군산법교유전산법경괄용우해결정전방전모형삼수변식문제.차외,종실례가이간출,입자군산법불수요과다적초시삼수치선험지식,이지수제공일개교관적초시삼수수색범위즉가획득량호적변식결과.
In order to obtain a precise mathematical model of electrostatic discharge (ESD), we put forward a new approach for determining the ESD model parameters by means of particle swarm optimization algorithm (PSO).The parameters of an ESD model based on Heidler equation are selected as the identification objects.The validity of this approach is confirmed with experimental and simulated current data.The fitting effect is also evaluated according to the overall and partial of the current waveform.Compared with genetic algorithm (GA), the PSO approach runs faster, obtains more precise parameters of the ESD model, and fits better either on the overall or at the partial key points of the current waveform.Therefore, the PSO outperforms the GA in solving the parameter identification problem of ESD model.Moreover, as can be seen from the examples, the PSO approach does not require too much prior knowledge of the initial parameter values but to provide a wide search range.