第四纪研究
第四紀研究
제사기연구
2009年
4期
831-836
,共6页
史江峰%鹿化煜%万建东%李升峰%聂宏善
史江峰%鹿化煜%萬建東%李升峰%聶宏善
사강봉%록화욱%만건동%리승봉%섭굉선
秦岭东缘%华山松%树轮宽度冬%半年温度
秦嶺東緣%華山鬆%樹輪寬度鼕%半年溫度
진령동연%화산송%수륜관도동%반년온도
Eastern Qinling Mountains%Pinus armandii Franch%tree-ring width chronology%winter-half year mean temperature
建立了秦岭东缘高海拔华山松树轮宽度年表,年表的可靠时段是从1911年到2005年(子样本强度大于0.8),基于此年表重建了秦岭东缘过去百年来冬半年(上年12月到当年4月)温度变化,重建方程的方差解释量为51%.重建序列有3个温暖时段:1938~1944年,1958~1967年和1998~2005年;两个冷时段:1945~1957年和1968~1976年.自1968年以来,温度开始上升,但温度变化幅度未表现出明显异常.秦岭东缘和华北、华中及华东邻近,本文重建的温度序列与这3个区域的温度变化在低温、高温时段对应一致.而且相关显著,都表现出自1970s以来的升温趋势.表明在秦岭东缘采用高海拔华山松重建冬半年温度具有很大的潜力.
建立瞭秦嶺東緣高海拔華山鬆樹輪寬度年錶,年錶的可靠時段是從1911年到2005年(子樣本彊度大于0.8),基于此年錶重建瞭秦嶺東緣過去百年來鼕半年(上年12月到噹年4月)溫度變化,重建方程的方差解釋量為51%.重建序列有3箇溫暖時段:1938~1944年,1958~1967年和1998~2005年;兩箇冷時段:1945~1957年和1968~1976年.自1968年以來,溫度開始上升,但溫度變化幅度未錶現齣明顯異常.秦嶺東緣和華北、華中及華東鄰近,本文重建的溫度序列與這3箇區域的溫度變化在低溫、高溫時段對應一緻.而且相關顯著,都錶現齣自1970s以來的升溫趨勢.錶明在秦嶺東緣採用高海拔華山鬆重建鼕半年溫度具有很大的潛力.
건립료진령동연고해발화산송수륜관도년표,년표적가고시단시종1911년도2005년(자양본강도대우0.8),기우차년표중건료진령동연과거백년래동반년(상년12월도당년4월)온도변화,중건방정적방차해석량위51%.중건서렬유3개온난시단:1938~1944년,1958~1967년화1998~2005년;량개랭시단:1945~1957년화1968~1976년.자1968년이래,온도개시상승,단온도변화폭도미표현출명현이상.진령동연화화북、화중급화동린근,본문중건적온도서렬여저3개구역적온도변화재저온、고온시단대응일치.이차상관현저,도표현출자1970s이래적승온추세.표명재진령동연채용고해발화산송중건동반년온도구유흔대적잠력.
Although global warming has proven true,studies have also indicated that there are large differences in temperature change in different regions.As a result,efforts to understand historic temperature change over different regions of China are in need.In this study,we chose the Eastern Qinling Mountains as the research region,as it is a transitional region between subtropical and temperate climate.Previous tree-ring research showed that there is complex relationship between tree growth and climate factors.Therefore,we collected Pinus armandii Franeh and Pinus tabulaeformis at different elevations from 1200m to 2200m above sea level(a.s.1.).The most significant relationship is found between high-elevation Pinus armandii Franch tree growth and winter-half year temperature (previous December to current April).The Pinus armandii Franch tree-ring width chronology used in this study was from the highest among our sampling sites,with an elevation range between 2100m and 2180m a.s.1.The reliable period is from 1911 to 2005 (subsample signal strength > 0.8).The chronology is correlated positively with temperature from previous December to current April,with statistically significant correlations(at 0.05 level)found in January(r = 0.30),February(r =0.58),March(r = 0.30),April(r = 0.42)and winter-half year mean temperature(r = 0.71).Based on these relationships,the winter-half year mean temperature in the sampling region was reconstructed using the function T12_4 =2.327×RW +2.186(N =48,R =0.71,R2 =0.51,R2adj =0.50,F(1,46)=47.86,p <0.001),where T12_4is the winter-half year mean temperature and RW is the ring-width standard chronology.The reconstructed and actual temperature series agree well at both high-or low-frequency bands.Both sign test and product mean test show that the reconstruction is significant at 0.01 level.It is shown that there are 3 warm spells,i,e.,1938~1944,1958-1967 and 1998-2005 and 2 cold stages,i.e.,1945~1957 and 1968~1976 during the reconstructed time period.An increasing temperature trend is clear since 1968,but it remains in natural ranges until now.The reconstructed winter-half year temperature series in the Eastern Qinling Mountains shows similar variations to the reconstructed temperature from nearby regions at both low-and high-temperature intervals,and they all indicate an increasing trend since the 1970s.Thus,our reconstruction of winter-half year temperature contains regional temperature signals to some extent.There is a great potential in reconstructing winter-half year temperature using Pinus armandii Franch trees growing at high elevations in the Eastern Qinling Mountains.