数学杂志
數學雜誌
수학잡지
JOURNAL OF MATHEMATICS
2008年
6期
596-602
,共7页
弱 Hopf 代数%弱 Hopf 双模%扭曲理论
弱 Hopf 代數%弱 Hopf 雙模%扭麯理論
약 Hopf 대수%약 Hopf 쌍모%뉴곡이론
weak Hopf algebra%weak Hopf bimodule%twisting theory
本文研究了弱Hopf代数的扭曲理论的对偶问题.利用了弱Hopf代数上的弱Hopf双模的(辫子)张量范畴与扭曲弱Hopf代数上的弱Hopf双模的(辫子)张量范畴等价方法,得到Long模范畴是Yetter-Drinfel'd模范畴的辫子张量子范畴.推广了Oeckl(2000)的结果.
本文研究瞭弱Hopf代數的扭麯理論的對偶問題.利用瞭弱Hopf代數上的弱Hopf雙模的(辮子)張量範疇與扭麯弱Hopf代數上的弱Hopf雙模的(辮子)張量範疇等價方法,得到Long模範疇是Yetter-Drinfel'd模範疇的辮子張量子範疇.推廣瞭Oeckl(2000)的結果.
본문연구료약Hopf대수적뉴곡이론적대우문제.이용료약Hopf대수상적약Hopf쌍모적(변자)장량범주여뉴곡약Hopf대수상적약Hopf쌍모적(변자)장량범주등개방법,득도Long모범주시Yetter-Drinfel'd모범주적변자장양자범주.추엄료Oeckl(2000)적결과.
In this paper we study the dual case of the twisting theory of weak Hopf algebras. Using the equivalent between the (braided) monoidal categories of weak Hopf bimodules over the original and the twisted weak Hopf algebras, we get the Long module category is a braided tensor subcategory of a Yetter-Drinfel'd module category, and then generalize the result of Oeckl (2000).