兰州大学学报(自然科学版)
蘭州大學學報(自然科學版)
란주대학학보(자연과학판)
JOURNAL OF LANZHOU UNIVERSITY
2004年
3期
1-4
,共4页
周宇斌%王明亮%汪帆%苗天德
週宇斌%王明亮%汪帆%苗天德
주우빈%왕명량%왕범%묘천덕
变系数耦合KdV方程组%齐次平衡原则%自Backlund变换%ε-展式法%变速孤立波解%二孤子解
變繫數耦閤KdV方程組%齊次平衡原則%自Backlund變換%ε-展式法%變速孤立波解%二孤子解
변계수우합KdV방정조%제차평형원칙%자Backlund변환%ε-전식법%변속고립파해%이고자해
coupled KdV equations with variable coefficients%homogeneous balance principle%auto Backlund transformation%ε-expansion method%solitary wave solutions with variant propagating speeds%two-soliton solution
通过齐次平衡原则,得到变系数耦合KdV方程组的一个自Backlund变换.通过自Backlund变换,利用ε-展式法可以完全的得到变速多重孤立波解.作为解释,我们得到了方程的二孤子解.
通過齊次平衡原則,得到變繫數耦閤KdV方程組的一箇自Backlund變換.通過自Backlund變換,利用ε-展式法可以完全的得到變速多重孤立波解.作為解釋,我們得到瞭方程的二孤子解.
통과제차평형원칙,득도변계수우합KdV방정조적일개자Backlund변환.통과자Backlund변환,이용ε-전식법가이완전적득도변속다중고립파해.작위해석,아문득도료방정적이고자해.
By using the homogeneous balance principle, an auto-Backlund transformation(BT) to a coupled KdV equations with general variable coefficients is derived. Based on the BT, the multi-soliton solutions with variable propagating speed to the equations can be completely obtained by using the ε-expansion method. As an illustrative example, we obtaind two-soliton solutions to the equations in detail.