光子学报
光子學報
광자학보
ACTA PHOTONICA SINICA
2006年
11期
1725-1729
,共5页
周明拓%Sharma A B%张建国%Fujise M
週明拓%Sharma A B%張建國%Fujise M
주명탁%Sharma A B%장건국%Fujise M
光纤通信%无线信号的光纤传输%毫米波通信%马赫-曾德调制器%远程本振信号传送
光纖通信%無線信號的光纖傳輸%毫米波通信%馬赫-曾德調製器%遠程本振信號傳送
광섬통신%무선신호적광섬전수%호미파통신%마혁-증덕조제기%원정본진신호전송
Optical fiber communications%Radio-over-fiber%Millimeter-wave communications%Mach-Zehnder modulator%Remote local-oscillator delivery
提出一个新型的毫米波光纤传输系统及本振信号远程传送的结构.此技术能为将来使用皮蜂窝网络提供宽带无线接入服务给出一个简单的基站接入点解决方案.计算和仿真结果表明,在激光器输出功率为-6.5 dBm,光放大增益为6 dB,激光线宽为1 MHz,75 MHz或150 MHz,误码率不超过10-9的情形下,622 Mbit/s的下行相移键控信号能够在传统单模光纤上传输超过30 km的距离.在具有相对大的激光器线宽150 MHz和光纤距离为30 km时,由激光器相位噪音和光纤色散所引起的(通过远程传送的)毫米波本振信号的额外相位误差的方差仅为1.74°.
提齣一箇新型的毫米波光纖傳輸繫統及本振信號遠程傳送的結構.此技術能為將來使用皮蜂窩網絡提供寬帶無線接入服務給齣一箇簡單的基站接入點解決方案.計算和倣真結果錶明,在激光器輸齣功率為-6.5 dBm,光放大增益為6 dB,激光線寬為1 MHz,75 MHz或150 MHz,誤碼率不超過10-9的情形下,622 Mbit/s的下行相移鍵控信號能夠在傳統單模光纖上傳輸超過30 km的距離.在具有相對大的激光器線寬150 MHz和光纖距離為30 km時,由激光器相位譟音和光纖色散所引起的(通過遠程傳送的)毫米波本振信號的額外相位誤差的方差僅為1.74°.
제출일개신형적호미파광섬전수계통급본진신호원정전송적결구.차기술능위장래사용피봉와망락제공관대무선접입복무급출일개간단적기참접입점해결방안.계산화방진결과표명,재격광기수출공솔위-6.5 dBm,광방대증익위6 dB,격광선관위1 MHz,75 MHz혹150 MHz,오마솔불초과10-9적정형하,622 Mbit/s적하행상이건공신호능구재전통단모광섬상전수초과30 km적거리.재구유상대대적격광기선관150 MHz화광섬거리위30 km시,유격광기상위조음화광섬색산소인기적(통과원정전송적)호미파본진신호적액외상위오차적방차부위1.74°.
A novel configuration for millimeter-wave (mm-wave) radio-over-fiber transmission systems with remote local-oscillator (LO) delivery was proposed. The proposed technique provides a very simple solution to base-station access points for pico-cellular networks in order to distribute the future broadband wireless-access services. Both numerical and simulation results show that, 622 Mbit/s binary-phase-shift-keying (BPSK) data in the downlink can be successfully transmitted with a bit error rate ≤10-9 over 30 km of a conventional single-mode fiber, for a laser output power of -6.5 dBm, an optical gain of 6 dB, and laser linewidths (LLW′s) of 1 MHz, 75 MHz, and 150 MHz, respectively. The variance of an additional phase error of the remotely delivered mm-wave LO due to laser phase noise and fiber dispersion is calculated to be only about 30.4 mrad (1.74°), in the case of the relatively large LLW of 150 MHz and a fiber length of 30 km.